Université Paris-Dauphine

L3 - Statistical modelling

QCM 05 oct. 2020

Dans cet exercice il vous est demandé de donner la ou les bonnes réponses.

Question 1

Let $f(x|\mu)$ be the density of a Cauchy distribution with location parameter μ i.e $f(x|\mu) =$ $\frac{1}{\pi[1+(x-\mu)^2]}$. Which of the following is true?

- The Cauchy distribution is not an exponential family.
- The Cauchy distribution is an exponential family with natural parameter $\tau(\mu) = \mu$ and natural parameter space $\Theta = \mathbb{R}$.
- The Cauchy distribution is an exponential family with natural parameter $\tau(\mu) = \mu^2$ and natural parameter space $\Theta = \mathbb{R}^+$.
- The Cauchy distribution is an exponential family with natural parameter $\tau(\mu) = \mu$ and natural parameter space $\Theta = \mathbb{R}^+$.
- The Cauchy distribution is an exponential family with natural parameter $\tau(\mu) = \mu^2$ and natural parameter space $\Theta = \mathbb{R}$.

Question 2 Which of the following family is not an exponential family :

The binomial distribution, with n and p unknown

- The Laplace distribution with μ known
- The beta distribution
- The multinomial distribution with n known

Question 3

Let $X \sim \mathcal{P}(X)$, with $P(X = n) = \exp(-\lambda)\lambda^n/n!$, and let $\phi : \mathbf{N} \to E \subset \mathbf{Q}$ be a bijective function, then what is the true statement about the distribution of $Y = \phi(X)$:

- is not in the exponential family
- is in the exponential family with sufficient statistic y
- is in the exponential family with sufficient statistic $\log(y)$
- is in the exponential family with sufficient statistic $\phi^{-1}(y)$
- is in the exponential family with sufficient statistic $\phi(y)$

Question 4 Which family is not exponential?

- $f(x|\theta) \propto \mathbf{1}_{\{0 \le x \le \phi\}} \frac{\theta}{1+x^2} \text{ for } \theta \in (0,\infty) \text{ and } \phi \text{ known}$
- $f(x|\theta) \propto \mathbf{1}_{\{-\theta \le x \le \theta\}} \exp(-x^2/\theta) \text{ for } \theta \in (0,\infty)$
- $f(x|\theta) \propto \frac{\theta}{2} \exp(-\theta x^2) (\log(1+x)^{\sqrt{\theta}}) \text{ for } \theta \in (0,\infty)$ $f(x|\theta) \propto e^{-x} x^{2\log(1+\theta^2)} \text{ for } \theta \in \mathbb{R}$

Question 5

Let $f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha-1} \exp(-\beta/x)$, with α and β unknown, what is **false** about this density :

- a natural parameter is $(-\beta, -\alpha 1)$
- a natural parameter is (α, β)
- a sufficient statistic is $(x, \log(x))$
- a sufficient statistic is $(1/x, \log(x))$

CORRECTED

Question 6

Let $f(x|\mu,\sigma)$ be the density of the Laplace distribution i.e $f(x|\mu,\sigma) = \frac{1}{2\sigma} \exp(-|x-\mu|/\sigma)$, $\sigma > 0$. Which of the following is true?

- The Laplace distribution with known μ is not an exponential family
- The Laplace distribution is an exponential family with natural parameter $\tau(\mu, \sigma) =$ $(-\mu, \sigma^2).$
- The Laplace distribution is an exponential family with natural parameter $\tau(\mu, \sigma) =$ $(-\mu/\sigma,\sigma^2).$
- The Laplace distribution with known μ is an exponential family with natural parameter $\tau(\sigma) = -\frac{1}{\sigma}.$

Question 7 Which family is not exponential?

- $f(x|\theta) \propto \mathbf{1}_{\{0 \le x \le \phi\}} \frac{\theta}{1+x^2}$ for $\theta \in (0,\infty)$ and ϕ known
- $f(x|\theta) \propto \mathbf{1}_{\{-\theta \le x \le \theta\}} \exp(-x^2/\theta) \text{ for } \theta \in (0,\infty)$ $f(x|\theta) \propto e^{-x} x^{2\log(1+\theta^2)} \text{ for } \theta \in \mathbb{R}$

 - $f(x|\theta) \propto \frac{\theta}{2} \exp(-\theta x^2) (\log(1+x)^{\sqrt{\theta}})$ for $\theta \in (0,\infty)$

Which of the following family is not an exponential family : Question 8

The beta distribution

The binomial distribution, with n and p unknown

- The multinomial distribution with n known
- The Laplace distribution with μ known

Question 9

Let $X \sim \mathcal{P}(X)$, with $P(X = n) = \exp(-\lambda)\lambda^n/n!$, and let $\phi : \mathbf{N} \to E \subset \mathbf{Q}$ be a bijective function, then what is the true statement about the distribution of $Y = \phi(X)$:

- is in the exponential family with sufficient statistic $\log(y)$
 - is not in the exponential family
- is in the exponential family with sufficient statistic y
- is in the exponential family with sufficient statistic $\phi(y)$

is in the exponential family with sufficient statistic $\phi^{-1}(y)$

Question 10

Let $f(x|\mu)$ be the density of a Cauchy distribution with location parameter μ i.e $f(x|\mu) =$ $\frac{1}{\pi[1+(x-\mu)^2]}$. Which of the following is true?

The Cauchy distribution is an exponential family with natural parameter $\tau(\mu) = \mu$ and natural parameter space $\Theta = \mathbb{R}^+$.

The Cauchy distribution is an exponential family with natural parameter $\tau(\mu) = \mu^2$ and natural parameter space $\Theta = \mathbb{R}^+$.

The Cauchy distribution is an exponential family with natural parameter $\tau(\mu) = \mu$ and natural parameter space $\Theta = \mathbb{R}$.

____ The Cauchy distribution is an exponential family with natural parameter $\tau(\mu) = \mu^2$ and natural parameter space $\Theta = \mathbb{R}$.

The Cauchy distribution is not an exponential family.

Corrected

Question 11

Let $f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha-1} \exp(-\beta/x)$, with α and β unknown, what is **false** about this density :

- a natural parameter is (α, β)
- a sufficient statistic is $(1/x, \log(x))$
- a sufficient statistic is $(x, \log(x))$
- a natural parameter is $(-\beta, -\alpha 1)$

Question 12

Let $f(x|\mu,\sigma)$ be the density of the Laplace distribution i.e $f(x|\mu,\sigma) = \frac{1}{2\sigma} \exp(-|x-\mu|/\sigma), \sigma > 0$. Which of the following is true?

- The Laplace distribution is an exponential family with natural parameter $\tau(\mu, \sigma) = (-\mu/\sigma, \sigma^2)$.
 - The Laplace distribution with known μ is not an exponential family
 - The Laplace distribution with known μ is an exponential family with natural parameter $\tau(\sigma) = -\frac{1}{\sigma}$.

The Laplace distribution is an exponential family with natural parameter $\tau(\mu, \sigma) = (-\mu, \sigma^2)$.