Université Paris-Dauphine

L3 - Statistical modelling

QCM 11 oct 2020

Dans cet exercice il vous est demandé de donner l'unique bonne réponse.

If x is a continuous sample of size n=12 and bootstrap is used to study the Question 1 variability of the mean of the sample, what is the number of values taken by the bootstrapped realisations

When given a sample x of size n from F and considering the median med(X)Question 2 as the quantity of interest, a bootstrap approximation of a 95% interval of variability of the empirical median is given by

quantile(median(matrix(sample(x,n*m,rep=TRUE),m)),c(.025,.975)) median(apply(matrix(sample(x,n*m,rep=TRUE),m),1,sum),prob=.95) quantile(apply(matrix(sample(x,n*m,rep=TRUE),m),1,median),c(.02,.97)) quantile(matrix(sample(median(x),n*m,rep=TRUE),m)),c(.035,.985))

Question 3

We want to compute the variance of the empirical quantile of order p, we proceed by bootstraping, which of the following returns this estimation, for x a vector of size 200, a sample of observations.

var(sapply(1:100,function(y)quantile(sample(x,length(x),replace=T),p))) quantile(sapply(1:100,function(y)var(sample(x,length(x)),replace=T)),p) var(sapply(1:100,function(x)quantile(sample(x,length(x)),p)))

Question 4 For a sample \mathbf{x} of size *n* the standard deviation of the sample median can be estimated by bootstrap as

5	
n	
5	

sd(matrix(sample(quantile(x,prob=.5),n*m,rep=TRUE),m)) nedian(apply(matrix(sample(sd(x),n*m,rep=TRUE),m),1,mean)) sd(apply(matrix(sample(x,n*m,rep=TRUE),m),1,median)) median(apply(matrix(sample(x,n*m,rep=TRUE),m),1,sd))

Question 5

We observe the realisation of a discrete random variable with values in $1, \ldots, n$, from the Y_i , iid realisations, we create the dataset **x** as a vector of size *n* defined by $x_i = \sum_i \mathbf{1}_{Y_i=i}$, that is the number of times the value j has been drawn. We want to estimate the bias of the estimator $\hat{p} = x_1 (\sum x_i)^{-1}$ of the P(Y = 1). The bias of this estimator :

is 0.

| can be estimated by bootstrap with mean(sapply(1:100,function(y){x[1]/length(x)}) - x[1]/length(x)).

can be estimated by bootstrap with mean(sapply(1:100,function(y){z=sample(x,replace=T); return(sum(z=1)/sum(z)))) - x[1]/length(x).

Question 6 If x is a continuous sample of size n=13 and bootstrap is used to study the variability of the median of the sample, what is the number of values taken by the bootstrapped realisations

Question 7

We want to compute the variance of the empirical quantile of order p, we proceed by bootstraping, which of the following returns this estimation, for \mathbf{x} a vector of size 200, a sample of observations.


```
var(sapply(1:100,function(x)quantile(sample(x,length(x)),p)))
quantile(sapply(1:100,function(y)var(sample(x,length(x)),replace=T)),p)
var(sapply(1:100,function(y)quantile(sample(x,length(x),replace=T),p)))
```

Question 8 When given a sample x of size n from F and considering the median med(X) as the quantity of interest, a bootstrap approximation of a 95% interval of variability of the empirical median is given by


```
median(apply(matrix(sample(x,n*m,rep=TRUE),m),1,sum),prob=.95)
quantile(median(matrix(sample(x,n*m,rep=TRUE),m)),c(.025,.975))
quantile(apply(matrix(sample(x,n*m,rep=TRUE),m),1,median),c(.02,.97))
quantile(matrix(sample(median(x),n*m,rep=TRUE),m)),c(.035,.985))
```

Question 9 If x is a continuous sample of size n=13 and bootstrap is used to study the variability of the median of the sample, what is the number of values taken by the bootstrapped realisations

Question 10

We observe the realisation of a discrete random variable with values in $1, \ldots, n$, from the Y_i , iid realisations, we create the dataset **x** as a vector of size *n* defined by $x_j = \sum_i \mathbf{1}_{Y_i=j}$, that is the number of times the value *j* has been drawn. We want to estimate the bias of the estimator $\hat{p} = x_1 (\sum x_i)^{-1}$ of the P(Y = 1). The bias of this estimator :

is 0.

can be estimated by bootstrap with mean(sapply(1:100,function(y){x[1]/length(x)})
- x[1]/length(x)).

can be estimated by bootstrap with mean(sapply(1:100,function(y){z=sample(x,replace=T); return(sum(z==1)/sum(z))})) - x[1]/length(x).

Corrected

Question 12 For a sample \mathbf{x} of size n the standard deviation of the sample median can be estimated by bootstrap as

median(apply(matrix(sample(sd(x),n*m,rep=TRUE),m),1,mean))
sd(apply(matrix(sample(x,n*m,rep=TRUE),m),1,median))
median(apply(matrix(sample(x,n*m,rep=TRUE),m),1,sd))
sd(matrix(sample(quantile(x,prob=.5),n*m,rep=TRUE),m))