Université Paris-Dauphine

L3 - Statistical modelling

MCQ 23 November 2020

This exercice requires you tick the one and unique correct answer.

Question 1 Given an iid sample X_1, \ldots, X_n from a Uniform $\mathcal{U}(\theta - 1, \theta + 1)$ distribution, the statistic $S(X) = (X_{(1)}, X_{(n)} - X_{(1)})$ is

incomplete and sufficient

incomplete and insufficient

complete and sufficient

complete and insufficient

Question 2 Let (X_1, \ldots, X_n) be a random vector on \mathbb{N}^n with probability mass function $p(x_1, \ldots, x_n) \propto 1/{\binom{\theta}{n}}$ if all $0 \le x_i \le \theta$'s are different and equal to zero otherwise, with $\theta \in \mathbb{N}^*$. Then the statistic $S(X_1, \ldots, X_n) = \max X_i$ is

complete and insufficient

incomplete and insufficient

complete and sufficient

incomplete and sufficient

Question 3 Given an iid sample X_1, \ldots, X_{10} from a Normal $\mathcal{N}(\theta, 2)$ distribution, the statistic $S(X_1, \ldots, X_{10}) = \{X_1 + X_{10}\}/2$ is

incomplete and insufficientincomplete and sufficientcomplete and insufficient

complete and insufficient complete and sufficient

Question 4 Let X_1, \ldots, X_n be an iid sample from a distribution that assigns with proba-

bility 1/3 the values $\theta - 1$, θ , or $\theta + 1$, $\theta \in \mathbb{R}$. Then $S(X_1, \ldots, X_n) = (X_{(1)}, X_{(n)})$ is

complete and sufficient

incomplete and sufficient

complete and insufficient

incomplete and insufficient

Question 5 Let X_1, \ldots, X_n be a random sample from a distribution with density $f(x) = \frac{1}{\theta} \exp\{-\frac{(x-\theta)}{\theta}\} \mathbb{I}_{(x>\theta)}$ Then $S(X_1, \ldots, X_n) = (X_{(1)}, \bar{X}_n)$ is

complete and sufficient

complete and insufficient

incomplete and insufficient

incomplete and sufficient

Question 6 Given an iid sample X_1, \ldots, X_n from a Uniform $\mathcal{U}(0, \theta)$ distribution, the statistic $S(X_1, \ldots, X_n) = \overline{X}_n$ is

- complete and sufficient
- incomplete and insufficient

incomplete and sufficient

complete and insufficient

Année 2020-2021

Corrected

Question 7 Assume that $X_1, ..., X_n$ are iid with density $f(x; \theta) = 2 \exp\{2x\} \theta^{-2} \mathbb{I}(x < \log(\theta))$. The statistic $S(X_1, ..., X_n) = X_{(n)}$ is

- complete and sufficient
- complete and insufficient
- incomplete and sufficient
- incomplete and insufficient

Question 8 Given an iid sample X_1, \ldots, X_n from a Uniform $\mathcal{U}(0, \theta)$ distribution, the statistic $S(X_1, \ldots, X_n) = \bar{X}_n$ is

- complete and insufficient
- incomplete and insufficient
- complete and sufficient
- incomplete and sufficient

Question 9 Assume that $X_1, ..., X_n$ are iid with density $f(x; \theta) = 2 \exp\{2x\} \theta^{-2} \mathbb{I}(x < \log(\theta))$. The statistic $S(X_1, ..., X_n) = X_{(n)}$ is

- complete and sufficient
- incomplete and insufficient
- incomplete and sufficient
- complete and insufficient

Question 10 Given an iid sample X_1, \ldots, X_n from a Uniform $\mathcal{U}(\theta - 1, \theta + 1)$ distribution, the statistic $S(X) = (X_{(1)}, X_{(n)} - X_{(1)})$ is

- complete and insufficient
- complete and sufficient
- incomplete and insufficient
- incomplete and sufficient

Question 11 Given an iid sample X_1, \ldots, X_{10} from a Normal $\mathcal{N}(\theta, 2)$ distribution, the statistic $S(X_1, \ldots, X_{10}) = \{X_1 + X_{10}\}/2$ is

- incomplete and sufficient
- complete and insufficient
- incomplete and insufficient
- complete and sufficient

Question 12 Let X_1, \ldots, X_n be an iid sample from a distribution that assigns with probability $\frac{1}{3}$ the values $\theta - 1$, θ , or $\theta + 1$, $\theta \in \mathbb{R}$. Then $S(X_1, \ldots, X_n) = (X_{(1)}, X_{(n)})$ is

- complete and insufficient
-] complete and sufficient
- incomplete and sufficient
- incomplete and insufficient

Question 13 Let X_1, \ldots, X_n be a random sample from a distribution with density $f(x) = \frac{1}{\theta} \exp\{-\frac{(x-\theta)}{\theta}\} \mathbb{I}_{(x>\theta)}$ Then $S(X_1, \ldots, X_n) = (X_{(1)}, \bar{X}_n)$ is

- complete and sufficient
- incomplete and insufficient
- complete and insufficient
- incomplete and sufficient

Corrected

Question 14 Let $(X_1, ..., X_n)$ be a random vector on \mathbb{N}^n with probability mass function $p(x_1, ..., x_n) \propto 1/{\binom{\theta}{n}}$ if all $0 \le x_i \le \theta$'s are different and equal to zero otherwise, with $\theta \in \mathbb{N}^*$. Then the statistic $S(X_1, ..., X_n) = \max X_i$ is

- incomplete and insufficient
- incomplete and sufficient
- complete and sufficient
- complete and insufficient