Statistique/Modèle linéaire

Partiel du 14 novembre 2001

Avec documents (durée deux heures). Deux exercices indépendants.

Exercice 1

On introduit une fonction de coût appelée LINEX,

$$L(\theta, d) = e^{c(d-\theta)} - c(d-\theta) - 1, \qquad c > 0$$

- 1. Montrer que $L(\theta, d)$ est toujours positive et ne s'annule que pour $d = \theta$.
- 2. Montrer que

$$\lim_{c \to 0} \frac{\mathcal{L}(\theta, d)}{c^2} = \frac{(d - \theta)^2}{2}.$$

3. Montrer que, pour une observation x de loi f_{θ} et une loi a priori $\pi(\theta)$, l'estimateur de Bayes sous le coût LINEX est

$$\delta^{\pi}(x) = \frac{-1}{c} \log \left\{ \mathbb{E}^{\pi(\theta|X=x)} \left[e^{-c\theta} | X = x \right] \right\}. \tag{1}$$

- 4. Déterminer l'estimateur de Bayes δ^{π} donné par (1) dans le cas où X suit une loi $\mathcal{N}(\theta, 1)$ et où π est la loi non-informative $\pi(\theta) = 1$.
- 5. Dans le cadre de la question 4, comparer le risque classique $R(\theta, \delta^{\pi}) = \mathbb{E}_{\theta} [L(\theta, \delta^{\pi}(X))]$ de l'estimateur de Bayes ainsi obtenu avec celui de $\delta_0(x) = x$, sous le coût LINEX.
- 6. Déterminer l'estimateur de Bayes δ^{π} donné par (1) lorsque x suit une loi $\mathcal{G}(\alpha,\theta)$ et lorsque π est la loi non-informative $\pi(\theta)=1/\theta$ sur \mathbb{R}_+ . On rappelle que la loi gamma $\mathcal{G}(\alpha,\theta)$ a pour densité

$$f(x|\alpha, \theta) = \frac{\theta^{\alpha} x^{\alpha - 1}}{\Gamma(\alpha)} e^{-\theta x}, \qquad x \in \mathbb{R}_{+}$$

Exercice 2

On considère X_1, \ldots, X_n échantillon iid $\mathcal{N}(\theta, \sigma^2)$, avec σ connu.

- 1. Donner la vraisemblance de cet échantillon et montrer qu'elle factorise en \overline{x} , moyenne empirique des x_i , réalisations des variables X_i .
- 2. Si on teste H_0 : $\theta = \theta_0$ contre H_1 : $\theta = \theta_1$, avec $\theta_0 < \theta_1$, montrer que le lemme de Neyman-Pearson conduit à la procédure de test optimale suivante: accepter H_0 si et seulement si

$$\overline{x} < \frac{(2\sigma^2 \log k) - \theta_0^2 + \theta_1^2}{2(\theta_1 - \theta_0)},$$
 (2)

où k est une constante déterminée par le niveau du test.

- 3. Montrer que, malgré la dépendance formelle de (2) à θ_1 et θ_0 , le choix d'un niveau α pour le test de H_0 contre H_1 conduit à une borne (2) indépendante de θ_1 . (On donnera cette borne en fonction des quantiles de la loi normale $\mathcal{N}(0,1)$.)
- 4. Déduire de la question 3 que le test précédent est aussi optimal (c'est à dire plus puissant) pour tester $H_0: \theta \leq \theta_0$ contre $H_1: \theta > \theta_1$ en montrant qu'il est bien au niveau α pour tous les $\theta \leq \theta_0$.
- 5. Pour tester H_0 : $\theta = \theta_0$ contre H_1 : $\theta \neq \theta_0$, montrer, à partir des questions précédentes, qu'on peut construire deux tests au niveau α dont les fonctions puissances ne sont pas comparables. En déduire qu'il n'existe pas de test uniformément plus puissant pour ce problème.
- 6. On considère à présent le problème de test inverse, soit

$$H_0: \theta \neq \theta_0$$
 contre $H_1: \theta = \theta_0$.

Montrer qu'une procédure de test φ uniformément plus puissante au niveau α , maximisant la probabilité de rejet de H_0 , $P_{\theta_0}(\varphi(X_1, \ldots, X_n) = 0)$, sous la contrainte

$$P_{\theta}(\varphi(X_1,\ldots,X_n)=0) \leq \alpha, \quad \theta \neq \theta_0,$$

est telle que

$$\varphi^*(x_1, \dots, x_n) = \begin{cases} 1 & \text{si } |\overline{x} - \theta_0| > c, \\ 0 & \text{si } |\overline{x} - \theta_0| < c, \end{cases}$$

où c est déterminé par α .