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Introduction

Necessity to ”reproduce chance” on a computer

Evaluation of the behaviour of a complex system (network,
computer program, queue, particle system, atmosphere,
epidemics, economic actions, &tc)

Determine probabilistic properties of a new statistical
procedure or under an unknown distribution [bootstrap]

Validation of a probabilistic model

Approximation of an expectation/integral for a non-standard
distribution [Law of Large Numbers]

Maximisation of a weakly regular function/likelihood
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Example (TCL for the binomial distribution)

If
Xn ∼ B(n, p) ,

Xn converges in distribution to the normal distribution:

√
n (Xn/n − p)

n→∞
 N

(
0,

p(1 − p)

n

)
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Example (Stochastic minimisation)

Consider the function

h(x, y) = (x sin(20y) + y sin(20x))2 cosh(sin(10x)x)

+ (x cos(10y) − y sin(10x))2 cosh(cos(20y)y) ,

to be minimised. (I know that the global minimum is 0 for
(x, y) = (0, 0).)
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Example (Stochastic minimisation (2))

Instead of solving the first order equations

∂h(x, y)

∂x
= 0 ,

∂h(x, y)

∂y
= 0

and of checking that the second order conditions are met, we can
generate a random sequence in R2

θj+1 = θj +
αj

2βj
∆h(θj , βjζj) ζj

where

⋄ the ζj ’s are uniform on the unit circle x2 + y2 = 1;

⋄ ∆h(θ, ζ) = h(θ + ζ) − h(θ − ζ);

⋄ (αj) and (βj) converge to 0
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The traveling salesman problem

A classical allocation problem:

Salesman who needs to visit
n cities

Traveling costs between
pairs of cities known [and
different]

Search of the optimum
circuit
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An NP-complete problem

The traveling salesman
problem is an example of
mathematical problems that
require explosive resolution
times
Number of possible circuits n!
and exact solutions available
in O(2n) time
Numerous practical
consequences (networks,
integrated circuit design,
genomic sequencing, &tc.)

Procter & Gamble
competition, 1962
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An open problem

Exact solution for 15, 112
German cities found in 2001 in
22.6 CPU years.

Exact solution for the 24, 978
Sweedish cities found in 2004 in
84.8 CPU years.
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Resolution via simulation

The simulated annealing algorithm:
Repeat

Random modifications of parts of the original circuit with cost
C0

Evaluation of the cost C of the new circuit

Acceptation of the new circuit with probability

exp

{
C0 − C

T

}
∧ 1

T , temperature, is progressively reduced
[Metropolis, 1953]
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Illustration

Example (400 cities)

T = 1.2
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Option pricing

Complicated computation of expectations/average values of
options, E[CT ], necessary to evaluate the entry price
(1 + r)−T E[CT ]

Example (European options)

Case when
CT = (ST − K)+

with

ST = S0 × Y1 × · · · × YT , Pr(Yi = u) = 1 − Pr(Yi = d) = p .

Resolution via the simulation of the binomial rv’s Yi
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Option pricing (cont’d)

Example (Asian options)

Continuous time model where

CT =

(
1

T

∫ T

0
S(t)dt − K

)+

≈
(

1

T

T∑

n=1

S(n) − K

)+

,

with

S(n + 1) = S(n) × exp {∆X(n + 1)} , ∆X(n)
iid∼ N (0, σ2) .

Resolution via the simulation of the normal rv’s ∆Xi
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Pseudo-random generator
Pivotal element of simulation techniques: they all require the
availability of uniform U (0, 1) random variables via
transformations

Definition (Pseudo-random generator)

Un Pseudo-random generator is a deterministic Ψ from ]0, 1[ to
]0, 1[ such that, for any starting value u0 and any n, the sequence

{u0, Ψ(u0), Ψ(Ψ(u0)), . . . ,Ψ
n(u0)}

behaves (statistically) like an iid sequence U (0, 1)

¡Paradox!

While avoiding randomness, the deterministic sequence
(u0, u1 = Ψ(u0), . . . , un = Ψ(un−1))
must resemble a random sequence!
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In R, use of the procedure

runif( )

Description:
‘runif’ generates random deviates.
Example:
u = runif(20)
‘Random.seed’ is an integer vector, containing the random number
generator (RNG) state for random number generation in R. It can
be saved and restored, but should not be altered by the user.
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In C, use of the procedure

rand() / random()

SYNOPSIS
# include <stdlib.h>
long int random(void);
DESCRIPTION
The random() function uses a non-linear additive feedback random
number generator employing a default table of size 31 long
integers to return successive pseudo-random numbers in the range
from 0 to RAND MAX. The period of this random generator is
very large, approximately 16*((2**31)-1).
RETURN VALUE
random() returns a value between 0 and RAND MAX.
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En Scilab, use of the procedure

rand()

rand() : with no arguments gives a scalar whose value changes
each time it is referenced. By default, random numbers are
uniformly distributed in the interval (0,1). rand(’normal’) switches
to a normal distribution with mean 0 and variance 1.
rand(’uniform’) switches back to the uniform distribution
EXAMPLE
x=rand(10,10,’uniform’)
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Example (A standard uniform generator)

The congruencial generator

D(x) = (ax + b) mod (M + 1).

has a period of M for proper choices of (a, b) and becomes a
generator on ]0, 1[ when dividing by M + 2

v = u*69069069 (1)
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Conclusion :

Use the appropriate random generator on the computer or the
software at hand instead of constructing a random generator of
poor quality
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Distributions different from the uniform distribution (1)

A problem formaly solved since

Theorem (Generic inversion)

If U is a uniform random variable on [0, 1) and if FX is the cdf of
the random variable X, then F−1

X (U) is distributed like X

Proof. Indeed,

P (F−1
X (U) ≤ x) = P (U ≤ FX(x)) = FX(x)

Note. When FX is not strictly increasing, we can take

F−1
X (u) = inf {x; FX(x) ≥ u}
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Applications...

Binomial distribution, B(n, p),

FX(x) =
∑

i≤x

(
n

i

)
pi(1 − p)n−i

and F−1
X (u) can be obtained numerically

Exponential distribution, E xp(λ),

FX(x) = 1 − exp(−λx) et F−1
X (u) = − log(u)/λ

Cauchy distribution, C (0, 1),

FX(x) =
1

π
arctan(x)+

1

2
et F−1

X (u) = tan(π(u−1/2))
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Other transformations...

[Hint]

Find transforms linking the distribution of interest with
simpler/know distributions

Example (Box-Müller transform)

For the normal distribution N (0, 1), if X1, X2
i.i.d.∼ N (0, 1),

X2
1 + X2

2 ∼ χ2
2, arctan(X1/X2) ∼ U ([0, 2π])

[Jacobian]
Since the χ2

2 distribution is the same as the E xp(1/2) distribution,
using a cdf inversion produces

X1 =
√
−2 log(U1) sin(2πU2) X2 =

√
−2 log(U1) cos(2πU2)
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Example

Student’s t and Fisher’s F distributions are natural byproducts of
the generation of the normal and of the chi-square distributions.

Example

The Cauchy distribution can be derived from the normal

distribution as: if X1, X2
i.i.d.∼ N (0, 1), then X1/X2 ∼ C (0, 1)



New operational instruments for statistical exploration (=NOISE)

Simulation of random variables

Non-uniform distributions (1)

Example

The Beta distribution B(α, β), with density

fX(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1 ,

can be derived from the Gamma distribution by: if X1 ∼ G a(α, 1),
X2 ∼ G a(β, 1), then

X1

X1 + X2
∼ B(α, β)
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Multidimensional distributions

Consider the generation of

(X1, . . . , Xp) ∼ f(x1, . . . , xp)

in Rp with components that are not necessarily independent

Cascade rule

f(x1, . . . , xp) = f1(x1) × f2|1(x2|x1) . . . × fp|−p(xp|x1, . . . , xp−1)
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Implementation

Simulate for t = 1, . . . , T

1 X1 ∼ f1(x1)

2 X2 ∼ f2|1(x2|x1)

...

p. Xp ∼ fp|−p(xp|x1, . . . , xp−1)
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Distributions different from the uniform distribution (2)

F−1
X rarely available

implemented algorithm in a resident software only for
standard distributions

inversion lemma does not apply in larger dimensions

new distributions may require fast resolution
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The Accept-Reject Algorithm

Given a distribution with density f to be simulated

Theorem (Fundamental theorem of simulation)

The uniform distribution on the
sub-graph

Sf = {(x, u); 0 ≤ u ≤ f(x)}

produces a marginal in x with
density f .
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Proof :

Marginal density given by

∫ ∞

0
I0≤u≤f(x)du = f(x)

and independence from the normalisation constant

Example

For a normal distribution, we just need to simulate (u, x) at
random in

{(u, x); 0 ≤ u ≤ exp(−x2/2)}
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Accept-reject algorithm

1 Find a density g that can be simulated and such that

sup
x

f(x)

g(x)
= M < ∞

2 Generate

Y1, Y2, . . .
i.i.d.∼ g , U1, U2, . . .

i.i.d.∼ U ([0, 1])

3 Take X = Yk where

k = inf{n ; Un ≤ f(Yn)/Mg(Yn)}



New operational instruments for statistical exploration (=NOISE)

Simulation of random variables

Non-uniform distributions (2)

Theorem (Accept–reject)

The random variable produced by the above stopping rule is
distributed form fX

Proof (1) : We have

P (X ≤ x) =
∞∑

k=1

P (X = Yk , Yk ≤ x)

=
∞∑

k=1

(
1 − 1

M

)k−1

P (Uk ≤ f(Yk)/Mg(Yk) , Yk ≤ x)

=
∞∑

k=1

(
1 − 1

M

)k−1 ∫ x

−∞

∫ f(y)/Mg(y)

0
du g(y)dy

=
∞∑

k=1

(
1 − 1

M

)k−1 1

M

∫ x

−∞
f(y)dy
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Proof (2)

If (X, U) is uniform on A ⊃ B,
the distribution of (X, U)
restricted to B is uniform on B.
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Properties

Does not require a normalisation constant

Does not require an exact upper bound M

Allows for the recycling of the Yk’s for another density f (note
that rejected Yk’s are no longer distributed from g)

Requires on average M Yk’s for one simulated X (efficiency
measure)
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Example

Take f(x) = exp(−x2/2) et g(x) = 1/(1 + x2)

f(x)

g(x)
= (1 + x2) e−x2/2 ≤ 2/

√
e

Probability of acceptance
√

e/2π = 0.66
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Theorem (Envelope)

If there exists a density gm, a function gl and a constant M such
that

gl(x) ≤ f(x) ≤ Mgm(x) ,

then

1 Generate X ∼ gm(x), U ∼ U[0,1];

2 Accept X if U ≤ gl(X)/Mgm(X);

3 else, accept X if U ≤ f(X)/Mgm(X)

produces random variable distributed from f .
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Uniform ratio algorithms
Slice sampler

Result :

Uniform simulation on

{(u, v); 0 ≤ u ≤
√

2f(v/u)}

produces
X = V/U ∼ f

Proof :

Change of variable (u, v) → (x, u) with Jacobian u and marginal
distribution of x provided by

x ∼
∫ √

2f(x)

0
u du =

√
2f(x)

2

2
= f(x)
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Example

For a normal distribution,
simulate (u, v) at random in

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.0

0
.2

0
.4

0
.6

u

v

{(u, v); 0 ≤ u ≤
√

2 e−v2/4u2} = {(u, v); v2 ≤ −4 u2 log(u/
√

2)}
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Slice sampler

If a uniform simulation on

G = {(u, x); 0 ≤ u ≤ f(x)}

is too complex [because of the inversion of x into u ≤ f(x)], we
can use instead a random walk on G:
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Slice sampler

Simulate for t = 1, . . . , T

1 ω(t+1) ∼ U[0,f(x(t))];

2 x(t+1) ∼ U
G(t+1) , where

G
(t+1) = {y; f(y) ≥ ω(t+1)}.
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Justification

The random walk is exploring uniformly G:

If
(U (t), X(t)) ∼ UG ,

then
(U (t+1), X(t+1)) ∼ UG .
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Proof:

Pr((U (t+1), X(t+1)) ∈ A × B)

=

∫ ∫ ∫

B

∫

A
I0≤u≤f(x)

I0≤u′≤f(x)

f(x)

If(x′)≥u′(x′)∫
If(y)≥u′dy

d(x, u, x′, u′)

=

∫ ∫

B

∫

A
f(x)

I0≤u′≤f(x)

f(x)

If(x′)≥u′(x′)∫
If(y)≥u′dy

d(x, x′, u′)

=

∫
If(x)≥u′dx

∫

B

∫

A

If(x′)≥u′(x′)∫
If(y)≥u′dy

d(x′, u′)

=

∫

B

∫

A
If(x′)≥u′≥0 d(x′, u′)
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Example (Normal distribution)

For the standard normal distribution,

f(x) ∝ exp(−x2/2),

a slice sampler is

ω|x ∼ U[0,exp(−x2/2)] ,

X|ω ∼ U
[−
√

−2 log(ω),
√

−2 log(ω)]
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Note

The technique also operates when f is replaced with

ϕ(x) ∝ f(x)

It can be generalised to the case when f is decomposed in

f(x) =

p∏

i=1

fi(x)
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Example (Truncated normal distribution)

If we consider instead the truncated N (−3, 1) distribution
restricted to [0, 1], with density

f(x) =
exp(−(x + 3)2/2)√

2π[Φ(4) − Φ(3)]
∝ exp(−(x + 3)2/2) = ϕ(x) ,

a slice sampler is

ω|x ∼ U[0,exp(−(x+3)2/2)] ,

X|ω ∼ U
[0,1∧{−3+

√
−2 log(ω)}]
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The Metropolis–Hastings algorithm

Generalisation of the slice sampler to situations when the slice
sampler cannot be easily implemented

Idea

Create a sequence (Xn)n such that, for n ‘large enough’, the
density of Xn is close to f
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The Metropolis–Hastings algorithm (2)

If f is the density of interest, we pick a proposal conditional density

q(y|x)

such that

it is easy to simulate

it is positive everywhere f is positive
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Metropolis–Hastings

For a current value X(t) = x(t),

1 Generate Yt ∼ q(y|x(t)).

2 Take

X(t+1) =

{
Yt with proba. ρ(x(t), Yt),

x(t) with proba. 1 − ρ(x(t), Yt),

where

ρ(x, y) = min

{
f(y)

f(x)

q(x|y)

q(y|x)
, 1

}
.
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Properties

Always accept moves to yt’s such that

f(yt)

q(yt|xt)
≥ f(xt)

q(xt|yt)

Does not depend on normalising constants for both f and
q(·|x) (if the later is independent from x)

Never accept values of yt such that f(yt) = 0

The sequence (x(t))t can take repeatedly the same value

The X(t)’s are dependent (Marakovian) random variables

links
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Justification

Joint distribution of (X(t), X(t+1))

If X(t) ∼ f(x(t)),

(X(t), X(t+1)) ∼ f(x(t))
{

ρ(x(t), x(t+1)) × q(x(t+1)|x(t))

[Yt accepted]

+

∫ [
1 − ρ(x(t), y)

]
q(y|x(t)) dy Ix(t)(x(t+1))

}

[Yt rejected]
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Balance condition

f(x) × ρ(x, y) × q(y|x) = f(x) min

{
f(y)

f(x)

q(x|y)

q(y|x)
, 1

}
q(y|x)

= min {f(y)q(x|y), f(x)q(y|x)}
= f(y) × ρ(y, x) × q(x|y)

Thus the distribution of (X(t), X(t+1)) as the distribution of
(X(t+1), X(t)) : if X(t) has the density f , then so does X(t+1)
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Link with slice sampling
The slice sampler is a very special case of Metropolis-Hastings
algorithm where the acceptance probability is always 1

1 for the generation of U ,

I0≤u′≤f(x)

I0≤u≤f(x)
×

f(x)−1 I0≤u′≤f(x)

f(x)−1 I0≤u≤f(x)
= 1

[joint density] [conditional density]

2 pour la génération de X,

I0≤u≤f(y)

I0≤u≤f(x)
×

I{z;u≤f(z)}(x)

I{z;u≤f(z)}(y)

∫
{z;u≤f(z)} f(z) dz
∫
{z;u≤f(z)} f(z) dz

= 1

[joint density] [conditional density]
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Independent proposals

Proposal q independent from X(t), denoted g as in Accept-Reject
algorithms.

Independent Metropolis-Hastings

For the current value X(t) = x(t),

1 Generate Yt ∼ g(y)

2 Take

X(t+1) =





Yt with proba. min

{
f(Yt) g(x(t))

f(x(t)) g(Yt)
, 1

}
,

x(t) otherwise.
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Markovian methods

Properties

Alternative to Accept-Reject

Avoids the computation of max f(x)/g(x)

Accepts more often than Accept-Reject

If xt achieves max f(x)/g(x), this is almost identical to
Accept-Reject

Except that the sequence (xt) is not independent



New operational instruments for statistical exploration (=NOISE)

Simulation of random variables

Markovian methods

Example (Gamma distribution)

Generate a distribution Ga(α, β) from a proposal
Ga(⌊α⌋, b = ⌊α⌋/α), where ⌊α⌋ is the integer part of α (this is a
sum of exponentials)

1 Generate Yt ∼ Ga(⌊α⌋, ⌊α⌋/α)

2 Take

X(t+1) =






Yt with prob.

(
Yt

x(t)
exp

{
x(t) − Yt

α

})α−⌊α⌋

x(t) else.
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Random walk Metropolis–Hastings

Proposal
Yt = X(t) + εt,

where εt ∼ g, independent from X(t), and g symmetrical

Instrumental distribution with density

g(y − x)

Motivation

local perturbation of X(t) / exploration of its neighbourhood
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Random walk Metropolis–Hastings

Starting from X(t) = x(t)

1 Generate Yt ∼ g(y − x(t))

2 Take

X(t+1) =






Yt with proba. min

{
1,

f(Yt)

f(x(t))

}
,

[symmetry of g]

x(t) otherwise
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Properties

Always accepts higher point and sometimes lower points (see
gradient algorithm)

Depends on the dispersion de g

Average robability of acceptance

̺ =

∫ ∫
min{f(x), f(y)}g(y − x) dxdy

close to 1 if g has a small variance [Danger!]
far from 1 if g has a large variance [Re-Danger!]
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Example (Normal distribution)

Generate N (0, 1) based on a uniform perturbation on [−δ, δ]

Yt = X(t) + δωt

Acceptance probability

ρ(x(t), yt) = exp{(x(t)2 − y2
t )/2} ∧ 1.
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Markovian methods

Example (Normal distribution (2))

Statistics based on 15000 simulations

δ 0.1 0.5 1.0

mean 0.399 −0.111 0.10
variance 0.698 1.11 1.06

When δ ↑, faster exploration of the support of f .
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Missing variable models

Special case when the density to simulate can be written as

f(x) =

∫

Z
f̃(x, z)dz

The random variable Z is then called missing data
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Completion principe

Idea

Simulate f̃ produces simulations from f

If
(X, Z) ∼ f̃(x, z) ,

marginaly
X ∼ f(x)
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Data Augmentation

Starting from x(t),

1. Simulate Z(t+1) ∼ f̃Z|X(z|x(t)) ;

2. Simuleater X(t+1) ∼ f̃X|Z(x|z(t+1)) .
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Example (Mixture of distributions)

Consider the simulation (in R2) of the density f(µ1, µ2)
proportional to

e−µ2
1−µ2

2 ×
100∏

i=1

{
0.3 e−(xi−µ1)2/2 + 0.7 e−(xi−µ2)2/2

}

when the xi’s are given/observed.
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Echantillon de 0.3 N(2.5,1)+ 0.7 N(0,1)

x
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Histogram of the xi’s and level set of f(µ1, µ2)
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Completion (1)

Replace every sum in the density with an integral:

0.3 e−(xi−µ1)2/2 + 0.7 e−(xi−µ2)2/2 =

∫ (
I
[0,0.3 e−(xi−µ1)2/2]

(ui)

+I
[0.3 e−(xi−µ1)2/2,0.3 e−(xi−µ1)2/2+0.7 e−(xi−µ2)2/2]

(ui)
)

dui

and simulate ((µ1, µ2), (U1, . . . , Un)) = (X, Z) via Data
Augmentation
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Completion (2)

Replace the Ui’s by the ξi’s , where

ξi =

{
1 si Ui ≤ 0.3 e−(xi−µ1)2/2,

2 sinon

Then

Pr (ξi = 1|µ1, µ2) =
0.3 e−(xi−µ1)2/2

0.3 e−(xi−µ1)2/2 + 0.7 e−(xi−µ2)2/2

= 1 − Pr (ξi = 2|µ1, µ2)
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Conditioning (1)

The conditional distribution of Z = (ξ1, . . . , ξn) given
X = (µ1, µ2) is given by

Pr (ξi = 1|µ1, µ2) =
0.3 e−(xi−µ1)2/2

0.3 e−(xi−µ1)2/2 + 0.7 e−(xi−µ2)2/2

= 1 − Pr (ξi = 2|µ1, µ2)
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Conditioning (2)

The conditional distribution of X = (µ1, µ2) given
Z = (ξ1, . . . , ξn) is given by

(µ1, µ2)|Z ∼ e−µ2
1−µ2

2 ×
∏

{i;ξi=1}

e−(xi−µ1)2/2 ×
∏

{i;ξi=2}

e−(xi−µ2)2/2

∝ exp

{
−(n1 + 2)

(
µ1 −

n1µ̂1

n1 + 2

)2

/2

}

× exp

{
−(n2 + 2)

(
µ2 −

n2µ̂2

n2 + 2

)2

/2

}

where nj is the number of ξi’s equal to j and njµ̂j is the sum of
the xi’s associated with those ξi equal to j

[Easy!]
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Chapter 2 :
Monte Carlo Methods &

EM algorithm

Introduction
Integration by Monte Carlo method
Importance functions
Acceleration methods
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Introduction

Uses of simulation

1 integration

I = Ef [h(X)] =

∫
h(x)f(x)dx

2 limiting behaviour/stationarity of complex systems

3 optimisation

arg min
x

h(x) = arg max
x

exp{−βh(x)} β > 0
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Introduction

Example (Propagation of an epidemic)

On a grid representing a region, a point is given by its coordinates
x, y
The probability to catch a disease is

Px,y =
exp(α + β · nx,y)

1 + exp(α + β · nx,y)
Inx,y>0

if nx,y denotes the number of neighbours of (x, y) who alread have
this disease
The probability to get healed is

Qx,y =
exp(δ + γ · nx,y)

1 + exp(δ + γ · nx,y)
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Introduction

Example (Propagation of an epidemic (2))

Question

Given (α, β, γ, δ), what is the speed of propagation of this
epidemic? the average duration? the number of infected persons?
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Integration by Monte Carlo method

Monte Carlo integration

Law of large numbers

If X1, . . . , Xn simulated from f ,

În =
1

n

n∑

i=1

h(Xi) −→ I
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Integration by Monte Carlo method

Central Limit Theorem

Evaluation of the error b

σ̂2
n =

1

n2

n∑

i=1

(h(Xi) − Î)2

and
În ≈ N (I, σ̂2

n)
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Integration by Monte Carlo method

Example (Normal)

For a Gaussian distribution, E[X4] = 3. Via Monte Carlo
integration,

n 5 50 500 5000 50,000 500,000

În 1.65 5.69 3.24 3.13 3.038 3.029

5 10 50 100 500 1000 5000 10000 50000

0.0
0.5

1.0
1.5

2.0
2.5

3.0

n

In
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Integration by Monte Carlo method

Example (Cauchy / Normal)

Consider the joint model

X|θ ∼ N (θ, 1), θ ∼ C(0, 1)

Once X is observed, θ is estimated by

δπ(x) =

∫ ∞

−∞

θ

1 + θ2
e−(x−θ)2/2dθ

∫ ∞

−∞

1

1 + θ2
e−(x−θ)2/2dθ
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Integration by Monte Carlo method

Example (Cauchy / Normal (2))

This representation of δπ suggests using iid variables

θ1, · · · , θm ∼ N (x, 1)

and to compute

δ̂π
m(x) =

∑m
i=1

θi

1 + θ2
i

∑m
i=1

1

1 + θ2
i

.

By vurtue of the Law of Large Numbers,

δ̂π
m(x) −→ δπ(x) quand m −→ ∞.
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Integration by Monte Carlo method

Example (Normal cdf)

Approximation of the normal cdf

Φ(t) =

∫ t

−∞

1√
2π

e−y2/2dy

by

Φ̂(t) =
1

n

n∑

i=1

IXi≤t,

based on a sample of size n (X1, . . . , Xn), generated by the
algorithm of Box-Muller.
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Integration by Monte Carlo method

Example (Normal cdf(2))

• Variance
Φ(t)(1 − Φ(t))/n,

since the variables IXi≤t are iid Bernoulli(Φ(t)).

• For t close to t = 0 thea variance is about 1/4n:
a precision of four decimals requires on average

√
n =

√
2 104

simulations, thus, 200 millions of iterations.

• Larger [absolute] precision in the tails
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Integration by Monte Carlo method

Example (Normal cdf(3))

n 0.0 0.67 0.84 1.28 1.65 2.32 2.58 3.09 3.72

102 0.485 0.74 0.77 0.9 0.945 0.985 0.995 1 1

103 0.4925 0.7455 0.801 0.902 0.9425 0.9885 0.9955 0.9985 1

104 0.4962 0.7425 0.7941 0.9 0.9498 0.9896 0.995 0.999 0.9999

105 0.4995 0.7489 0.7993 0.9003 0.9498 0.9898 0.995 0.9989 0.9999

106 0.5001 0.7497 0.8 0.9002 0.9502 0.99 0.995 0.999 0.9999

107 0.5002 0.7499 0.8 0.9001 0.9501 0.99 0.995 0.999 0.9999

108 0.5 0.75 0.8 0.9 0.95 0.99 0.995 0.999 0.9999

Evaluation of normal quantiles by Monte Carlo based on n
normal generations
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Importance functions

Importance functions

Alternative representation :

I =

∫
h(x)f(x)dx =

∫
h(x)

f(x)

g(x)
g(x)dx

Thus, if Y1, . . . , Yn simuated from g,

Ĩn =
1

n

n∑

i=1

h(Yi)
f(Yi)

g(Yi)
−→ I
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Importance functions

Appeal

Works for all g’s such that

supp(g) ⊃ supp(f)

Possible improvement of the variance

Recycling of simulations Yi ∼ g for other densities f

Usage of simple distributions g
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Importance functions

Example (Normal)

For the normal distribution and the approximation of E[X4],

∫ ∞

−∞
x4e−x2/2dx

[y=x2]
= 2

∫ ∞

0
y3/2 1

2
e−y/2dy

suggests using g(y) = exp(−y/2)/2
n 5 50 500 5000 50000

Ĩn 3.29 2.89 3.032 2.97 3.041

5 10 50 100 500 1000 5000 10000 50000

−0.
1

0.0
0.1

0.2
0.3

0.4
0.5

n

In
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Importance functions

Choice of the importance function

The “best” g function depends on the density f and on the h
function

Theorem (Optimal importance)

The choice of g that minimises the variance of Ĩn is

g⋆(x) =
|h(x)|f(x)

I
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Importance functions

Remarks

Finite variance only if

Ef

[
h2(X)

f(X)

g(X)

]
=

∫

X
h2(x)

f(X)

g(X)
dx < ∞ .

Null variance for g⋆ if h s positive (!!)

g⋆ depends on the very I we are trying to estimate (??)

Replacement of Ĩn by the harmonic mean

Ǐn =

∑n
i=1 h(yi)/|h(yi)|∑n

i=1 1/|h(yi)|

(numerator and denominator are convergent)
often poor (infinite variance)
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Importance functions

Example (Normal)

For the normal distribution and the approximation of E[X4],
g⋆(x) ∝ x4 exp(−x2/2), distribution of the squared root of a
G a(5/2, 1/2) rv

[Exercise]

n 5 50 500 5,000 50,000 500,000

Ǐn 4.877 2.566 2.776 2.317 2.897 3.160

1e+01 1e+02 1e+03 1e+04 1e+05

−1
0

1
2

n

In
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Importance functions

Example (Student’s t)

X ∼ T (ν, θ, σ2), with density

f(x) =
Γ((ν + 1)/2)

σ
√

νπ Γ(ν/2)

(
1 +

(x − θ)2

νσ2

)−(ν+1)/2

.

Take θ = 0, σ = 1 and

I =

∫ ∞

2.1
x5f(x)dx

is the integral of interest



New operational instruments for statistical exploration (=NOISE)

Monte Carlo Method and EM algorithm

Importance functions

Example (Student’s t (2))

• Choice of importance
functions

◦ f , since f = N (0,1)√
χ2

ν
/ν

◦ Cauchy C(0, 1)
◦ Normal N (0, 1)
◦ U ([0, 1/2.1])

Results:

◦ Uniform optimal

◦ Cauchy OK

◦ f and Normal poor
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Acceleration methods

Correlated simulations

Negative correlation...

Two samples (X1, . . . , Xm) and (Y1, . . . , Ym) distributed from f in
order to estimate

I =

∫

R

h(x)f(x)dx .

Both

Î1 =
1

m

m∑

i=1

h(Xi) et Î2 =
1

m

m∑

i=1

h(Yi)

have mean I and variance σ2
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Correlated simulations (2)

...reduices the variance

The variance of the average is

var

(
Î1 + Î2

2

)
=

σ2

2
+

1

2
cov(Î1, Î2).

Therefore, if both samples are negatively correlated,

cov(Î1, Î2) ≤ 0 ,

they do better than two independent samples with the same size
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Acceleration methods

Antithetic variables

Construction of negatively correlated variables

1 If f symmetric about µ, take Yi = 2µ − Xi

2 If Xi = F−1(Ui), take Yi = F−1(1 − Ui)

3 If (Ai)i is a partition of X , partitionned sampling takes Xj ’s
in each Ai (requires the knowledge of Pr(Ai))
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Acceleration methods

Control variates

Take

I =

∫
h(x)f(x)dx

to be computer and

I0 =

∫
h0(x)f(x)dx

already known
We nonetheless estimate I0 by Î0 (and I by Î)
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Control variates (2)

Combined estimator

Î
∗ = Î + β(Î0 − I0)

Î∗ is unbiased for I et

var(Î∗) = var(Î) + β2var(Î) + 2βcov(Î, Î0)
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Control variates (3)

Optimal choice of β

β⋆ = −cov(Î, Î0)

var(Î0)
,

with
var(Î⋆) = (1 − ρ2) var(Î) ,

where ρ correlation between Î and Î0
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Acceleration methods

Example (Approximation of quantiles)

Consider the evaluation of

̺ = Pr(X > a) =

∫ ∞

a
f(x)dx

by

ˆ̺ =
1

n

n∑

i=1

I(Xi > a), Xi
iid∼ f

with Pr(X > µ) = 1
2
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Acceleration methods

Example (Approximation of quantiles (2))

The control variate

1

n

n∑

i=1

I(Xi > a) + β

(
1

n

n∑

i=1

I(Xi > µ) − Pr(X > µ)

)

improves upon ˆ̺ if

β < 0 et |β| < 2
cov(δ1, δ3)

var(δ3)
= 2

Pr(X > a)

Pr(X > µ)
.
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Integration by conditioning
Take advantage of the inequality

var(E[δ(X)|Y]) ≤ var(δ(X))

also called Rao-Blackwell Theorem

Consequence :

If Î is an unbiased estimator of I = Ef [h(X)], with X simulated
from the joint density f̃(x, y), where

∫
f̃(x, y)dy = f(x),

the estimator
Î
∗ = Ef̃ [Î|Y1, . . . , Yn]

dominates Î(X1, . . . , Xn) in terms of variance (and is also
unbiased)
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Acceleration methods

Example (Mean of a Student’s t)

Consider

E[h(x)] = E[exp(−x2)] avec X ∼ T (ν, 0, σ2)

Student’s t distribution can be simulated as

X|y ∼ N (µ, σ2y) and Y −1 ∼ χ2
ν .
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Acceleration methods

Example (Mean of a Student’s t (2))

The empirical average

1

m

m∑

j=1

exp(−X2
j ) ,

can be improved based on the joint sample

((X1, Y1), . . . , (Xm, Ym))

since

1

m

m∑

j=1

E[exp(−X2)|Yj ] =
1

m

m∑

j=1

1√
2σ2Yj + 1

is the conditional expectation
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Example (Mean of a Student’s t (3))

In this special case, the precision is ten times higher
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Estimators of E[exp(−X2)]: empirical average (full lines)
versus conditional expectation (dotted line) for
(ν, µ, σ) = (4.6, 0, 1).
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Chapter 3 :
The Bootstrap Method

Introduction
Glivenko-Cantelli’s Theorem
Bootstrap
Parametric Bootstrap
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Introduction

Intrinsic randomness

Estimation from a random sample means uncertainty

Since based on a random sample, an estimator

δ(X1, . . . , Xn)

also is a random variable
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Bootstrap Method

Introduction

Average variation

Question 1 :

How much does δ(X1, . . . , Xn) vary when the sample varies?

Question 2 :

What is the variance of δ(X1, . . . , Xn) ?

Question 3 :

What is the distribution of δ(X1, . . . , Xn) ?
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Introduction

Example (Normal sample)

Take X1, . . . , X100 a random sample from N (θ, 1). Its mean θ is
estimated by

θ̂ =
1

100

100∑

i=1

Xi

Moyennes de 100 points pour 200 echantillons

x

−0.2 −0.1 0.0 0.1 0.2 0.3

0
1

2
3

4
5

6

Variation compatible with the (known) distribution
θ̂ ∼ N (θ, 1/100)
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Introduction

Associated problems

Observation of a single sample in most cases

The sampling distribution is often unknown

The evaluation of the average variation of δ(X1, . . . , Xn) is
paramount for the construction of confidence intervals and for
testing/answering questions like

H0 : θ ≤ 0

In the normal case, the true θ stands with high probability in
the interval

[θ̂ − 2σ, θ̂ + 2σ] .

Quid of σ ?!
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Glivenko-Cantelli’s Theorem

Estimation of the repartition function

Extension/application of the LLN to the approximation of the cdf:
For a sample X1, . . . , Xn, if

F̂n(x) =
1

n

n∑

i=1

I]−∞,Xi](x)

=
card {Xi; Xi ≤ x}

n
,

F̂n(x) is a convergent estimator of the cdf F (x)
[Glivenko–Cantelli]

F̂n(x) −→ Pr(X ≤ x)
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Bootstrap Method

Glivenko-Cantelli’s Theorem

Example (Normal sample)
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Estimation of the cdf F from a normal sample of 100 points
and variation of this estimation over 200 normal samples
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Glivenko-Cantelli’s Theorem

Properties

Estimator of a non-parametric nature : it is not necessary to
know the distribution or the shape of the distribution of the
sample to derive this estimator
c© it is always available

Robustess versus efficiency: If the [parameterised] shape of
the distribution is known, there exists a better approximation
based on this shape, but if the shape is wrong, the result can
be completely off!
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Glivenko-Cantelli’s Theorem

Example (Normal sample)

cdf of N (θ, 1), Φ(x − θ)
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Estimation of Φ(· − θ) by F̂n and by Φ(· − θ̂) based on 100
points and maximal variation of thoses estimations over 200
replications
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Example (Non-normal sample)

Sample issued from

0.3N (0, 1) + 0.7N (2.5, 1)

wrongly allocated to a normal distribution Φ(· − θ)
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Glivenko-Cantelli’s Theorem
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Estimation of Φ(· − θ) by F̂n and by Φ(· − θ̂) based on 100
points and maximal variation of thoses estimations over 200
replications
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Extension to functionals of F

For any quantity of the form

θ(F ) =

∫
h(x) dF (x) ,

[Functional of the cdf]
use of the approximation

θ̂(F ) = θ(F̂n)

=

∫
h(x) dF̂n(x)

=
1

n

n∑

i=1

h(Xi)

[Moment estimator]
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Glivenko-Cantelli’s Theorem

Example (Normal sample)

Since θ also is the median of N (θ, 1), θ̂ can be chosen as the
median of F̂n, equal to the median of X1, . . . , Xn, namely X(n/2)
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Comparison of the variations of sample means and sample
medians over 200 normal samples
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How can one approximate the distribution of θ(F̂n) ?

Principle

Since

θ(F̂n) = θ(X1, . . . , Xn) with X1, . . . , Xn
i.i.d.∼ F

replace F with F̂n :

θ(F̂n) ≈ θ(X∗
1 , . . . , X∗

n) with X∗
1 , . . . , X∗

n
i.i.d.∼ F̂n
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Bootstrap

Implementation

Since F̂n is known, it is possible to simulate from F̂n, therefore
one can approximate the distribution of θ(X∗

1 , . . . , X∗
n) [instead of

θ(X1, . . . , Xn)]
The distribution corresponding to

F̂n(x) = card {Xi; Xi ≤ x}
/
n

allocates a probability of 1/n to each point in {x1, . . . , xn} :

PrF̂n(X∗ = xi) = 1/n

Simulating from F̂n is equivalent to sampling with replacement
in (X1, . . . , Xn)

[in R, sample(x,n,replace=T)]
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Bootstrap

Monte Carlo implementation

1 For b = 1, . . . , B,
1 generate a sample Xb

1, . . . ,X
b
n from F̂n

2 construct the corresponding value

θ̂b = θ(Xb
1, . . . ,X

b
n)

2 Use the sample
θ̂1, . . . , θ̂B

to approximate the distribution of

θ(X1, . . . , Xn)
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Notes
bootstrap

the sample itself is used to build an evaluation of its distribution
[Adventures of the Munchausen Baron ]

a bootstrap sample is obtained via n samplins with
replacement in (X1, . . . , Xn)

this sample can then take nn values (or
(
2n−1

n

)
values if the

order does not matter)
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Example (Sample 0.3N (0, 1) + 0.7N (2.5, 1))
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Variation of the empirical means over 200 bootstrap samples
versus observed average
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Example (Derivation of the average variation)

For an estimator θ(X1, . . . , Xn), the standard deviation is given by

η(F ) =

√
EF [(θ(X1, . . . , Xn) − EF [θ(X1, . . . , Xn)])2]

and its bootstrap approximation is

η(F̂n) =

√
EF̂n [(θ(X1, . . . , Xn) − EF̂n [θ(X1, . . . , Xn)])2]
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Bootstrap

Example (Derivation of the average variation (2))

Approximation itself approximated by

η̂(F̂n) =

(
1

B

B∑

b=1

(θ(Xb
1, . . . , X

b
n) − θ̄)2

)1/2

where

θ̄ =
1

B

B∑

b=1

θ(Xb
1, . . . , X

b
n)
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Bootstrap

Example (Sample 0.3N (0, 1) + 0.7N (2.5, 1))
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Interval of bootstrap variation at ±2η̂(F̂n) and average of the
observed sample
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Example (Normal sample)

Sample

(X1, . . . , X100)
i.i.d.∼ N (θ, 1)

Comparison of the confidence intervals

[x̄ − 2 ∗ σ̂x/10, x̄ + 2 ∗ σ̂x/10] = [−0.113, 0.327]

[normal approximation]

[x̄∗ − 2 ∗ σ̂∗, x̄∗ + 2 ∗ σ̂∗] = [−0.116, 0.336]

[normal bootstrap approximation]

[q∗(0.025), q∗(0.975)] = [−0.112, 0.336]

[generic bootstrap approximation]
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Bootstrap
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Variation ranges at 95% for a sample of 100 points and 200
bootstrap replications
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Parametric Bootstrap

If the parametric shape of F is known,

F (·) = Φλ(·) λ ∈ Λ ,

an evaluation of F more efficient than F̂n is provided by

Φλ̂n

where λ̂n is a convergent estimator of λ
[Cf Example 46]
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Parametric Bootstrap

Approximation of the distribution of

θ(X1, . . . , Xn)

by the distribution of

θ(X∗
1 , . . . , X∗

n) X∗
1 , . . . , X∗

n
i.i.d.∼ Φλ̂n

May avoid simulation approximations in some cases
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Example (Exponential Sample )

Take
X1, . . . , Xn

i.i.d.∼ Exp(λ)

and λ = 1/Eλ[X] to be estimated
A possible estimator is

λ̂(x1, . . . , xn) =
n∑n

i=1 xi

but this estimator is biased

Eλ[λ̂(X1, . . . , Xn)] 6= λ
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Parametric Bootstrap

Example (Exponential Sample (2))

Questions :

What is the bias

λ − Eλ[λ̂(X1, . . . , Xn)]

of this estimator ?

What is the distribution of this estimator ?
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Bootstrap evaluation of the bias

Example (Exponential Sample (3))

λ̂(x1, . . . , xn) − Eλ̂(x1,...,xn)[λ̂(X1, . . . , Xn)]

[parametric version]

λ̂(x1, . . . , xn) − EF̂n
[λ̂(X1, . . . , Xn)]

[non-parametric version]
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Example (Exponential Sample (4))

In the first (parametric) version,

1/λ̂(X1, . . . , Xn) ∼ Ga(n, nλ)

and
Eλ[λ̂(X1, . . . , Xn)] =

n

n − 1
λ

therefore the bias is analytically evaluated as

−λ
/
n − 1

and estimated by

− λ̂(X1, . . . , Xn)

n − 1
= −0.00787
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Parametric Bootstrap

Example (Exponential Sample (5))

In the second (nonparametric) version, evaluation by Monte Carlo,

λ̂(x1, . . . , xn) − EF̂n
[λ̂(X1, . . . , Xn)] = 0.00142

which achieves the “wrong” sign
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Example (Exponential Sample (6))

Construction of a confidence interval on λ
By parametric bootstrap,

Prλ

(
λ̂1 ≤ λ ≤ λ̂2

)
= Pr

(
ω1 ≤ λ/λ̂ ≤ ω2

)
= 0.95

can be deduced from

λ/λ̂ ∼ Ga(n, n)

[In R, qgamma(0.975,n,1/n)]

[λ̂1, λ̂2] = [0.452, 0.580]
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Example (Exponential Sample (7))

In nonarametric bootstrap, one replaces

PrF (q(.025) ≤ λ(F ) ≤ q(.975)) = 0.95

with
PrF̂n

(
q∗(.025) ≤ λ(F̂n) ≤ q∗(.975)

)
= 0.95

Approximation of quantiles q∗(.025) and q∗(.975) of λ(F̂n) by
bootstrap (Monte Carlo) sampling

[q∗(.025), q∗(.975)] = [0.454, 0.576]
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Example (Student Sample)

Take

X1, . . . , Xn
i.i.d.∼ T(5, µ, τ2)

def
= µ + τ

N (0, 1)√
χ2

5/5

µ and τ could be estimated by

µ̂n =
1

n

n∑

i=1

Xi τ̂n =

√
5 − 2

5

√√√√ 1

n

n∑

i=1

(Xi − µ̂)2

=

√
5 − 2

5
σ̂n
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Parametric Bootstrap

Example (Student Sample (2))

Problem

µ̂n is not distributed from a Student T(5, µ, τ2/n) distribution
The distribution of µ̂n ccan be reproduced by bootstrap sampling
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Parametric Bootstrap

Example (Student Sample (3))

Comparison of confidence intervals

[µ̂n − 2 ∗ σ̂n/10, µ̂n + 2 ∗ σ̂n/10] = [−0.068, 0.319]

[normal approximation]

[q∗(0.05), q∗(0.95)] = [−0.056, 0.305]

[parametric boostrap approximation]

[q∗(0.05), q∗(0.95)] = [−0.094, 0.344]

[non parametric boostrap approximation]
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Chapter 4 :
Rudiments of Nonparametric Statistics

Introduction
Density Estimation
Nonparametric tests
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Rudiments of Nonparametric Statistics

Introduction

Probleme :

How could one conduct a statistical inference when the distribution
of the data X1, . . . , Xn is unknown?

X1, . . . , Xn
i.i.d.∼ F

with F unknown

Nonparametric setting in opposition to the parametric case
when F (·) = Gθ(·) with only θ unknown
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Introduction

Nonparametric Statistical Inference

Estimation of a quantity that depends on F

θ(F ) =

∫
h(x) dF (x)

Decision on an hypothesis about F

F ∈ F0 ? F == F0 ? θ(F ) ∈ Θ0 ?

Estimation of functionals of F

F f(x) =
dF

dx
(x) EF [h(X1)|X2 = x]
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Density Estimation

Density Estimation

To estimate

f(x) =
dF

dx
(x)

[density of X]
a natural solution is

f̂n(x) =
dF̂n

dx
(x)

but
F̂n cannot be differentiated!
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Histogram Estimation

A first solution is to reproduce the stepwise constant structure of
F̂n pour f

f̂n(x) =
k∑

i=1

ωiI[ai,ai+1[(x) a1 < . . . < ak+1

by picking the ωi’s such that

k∑

i=1

ωi(ai+1 − ai) = 1 et ωi(ai+1 − ai) = P̂F (X ∈ [ai, ai+1[)
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Density Estimation

Histogram Estimation (cont’d)

For instance,

ωi(ai+1 − ai) =
1

n

n∑

i=1

I[ai,ai+1[(Xi)

= F̂n(ai+1) − F̂n(ai)

[bootstrap]
is a converging estimator of PF (X ∈ [ai, ai+1[)

[Warning: side effects!]
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Density Estimation

hist(x)$density

With R, hist(x)$density provides the values of ωi and
hist(x)$breaks the values of the ai’s

It is better to use the values
produced by hist(x)$density to build
up a stepwise linear function by
plot(hist(x)$density) rather than to
use a stepwise constant function.
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Histogram estimator for
k = 45 and 450 normal
observations
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Density Estimation

Probabilist Interpretation

Starting with stepwise constant functions, the resulting
approximation of the distribution is a weighted sum of uniforms

k∑

i=1

πiU([ai, ai+1])

Equivalent to a stepwise linear approximation of the cdf

F̃n(x) =

n∑

i=1

πi
x − ai

ai+1 − ai
I[ai,ai+1[(x)



New operational instruments for statistical exploration (=NOISE)

Rudiments of Nonparametric Statistics
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Drawbacks

Depends on the choice of the partition (ai)i, often based on
the data itself (see R)

Problem of the endpoints a1 and ak+1 : while not infinite
(why?), they still must approximate the support of f

k and (ai)i must depend on n to allow for the convergence of
f̂n toward f

but... ai+1 − ai must not decrease too fast to 0 to allow for
the convergence of πi: there must be enough observations in
each interval [ai, ai+1]
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Scott bandwidth

“Optimal” selection of the width of the classes :

hn = 3.5 σ̂ n−1/3 et hn = 2.15 σ̂ n−1/5

provide the right width ai+1 − ai (nclass = range(x) / h) for a
stepwise constant f̂n and a stepwise linear fn, respectively. (In the
sense that they ensure the convergence of f̂n toward f when n
goes to ∞.)

[nclass=9 and nclass=12 in the next example]
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normal sample with 450 observations
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Kernel Estimator
Starting with the definition

f(x) =
dF

dx
(x) ,

we can also use the approximation

f̂(x) =
F̂n(x + δ) − F̂n(x − δ)

2δ

=
1

2δn

n∑

i=1

{IXi<x+δ − IXi<x−δ}

=
1

2δn

n∑

i=1

I[−δ,δ](x − Xi)

when δ is small enough.
[Positive point : f̂ is a density]
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Density Estimation

Analytical and probabilistic interpretation

With this approximation

f̂n(x) =
# observations close to x

2δn

Particular case of an histogram estimator where the ai’s are like
Xj ± δ

Representation of f̂n as a weighted sum of uniforms

1

n

n∑

i=1

U([Xi − δ, Xi + δ])

[Note connection with bootstrap]
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Density Estimation
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Variation of uniform kernel estimators as a function of δ for a
non-normal sample of 200 observations
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Extension

Instead of a uniform approximation around each Xi, we can use a
smoother distribution:

f̂(x) =
1

δn

n∑

i=1

K

(
x − Xi

δ

)

where K is a probability density (kernel) and δ a scale factor that
is small enough.

With R, density(x)
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Kernel selection

All densities are a priori acceptable. In practice (and with R, usage
of

the normal/Gaussian kernel [kernel=”gaussian” or ”g”]

the Epanechnikov’s kernel [kernel=”epanechnikov” or ”e”]

K(y) = C {1 − y2}2 I[−1,1](y)

the triangular kernel [kernel=”triangular” or ”t”]

K(y) = (1 + y)I[−1,0](y) + (1 − y)I[0,1](y)

Conclusion : Very little influence on the estimation of f (except
for the uniform kernel [kernel=”rectangular” or ”r”]).
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Variation of the kernel estimates with the kernel for a
non-normal sample of 200 observations
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Density Estimation

Convergence to f

The choice of the bandwidth δ is crucial!

If δ large, many Xi contribute to the estimation of f(x)
[Over-smoothing]

If δ small, few Xi contribuent to the estimation of f(x)
[Under-smoothing]
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Density Estimation
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Optimal bandwidth

When considering the averaged integrated error

d(f, f̂n) = E

[∫
{f(x) − f̂n(x)}2 dx

]
,

there exists an optimal choice for the bandwidth δ, denoted hn to
indicate its dependance on n.
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Optimal bandwidth (cont’d)

Using the decomposition

∫ {
f(x) − E

[
f̂(x)

]}2
dx +

∫
var{f̂(x)}dx ,

[Bias2+variance]
and the approximations

f(x) − E

[
f̃(x)

]
≃ f ′′(x)

2
h2

n

E

[
exp{−(Xi − x)2/2h2

n}√
2πhn

]
≃ f(x) ,

[Exercise]



New operational instruments for statistical exploration (=NOISE)

Rudiments of Nonparametric Statistics

Density Estimation

Optimal bandwidth (cont’d)

we deduce that the bias is of order

∫ {
f ′′(x)

2

}2

dx h4
n

and that the variance is approximately

1

nhn

√
2π

∫
f(x) dx =

1

nhn

√
2π

[Exercise]
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Optimal bandwidth (end’d)

Therefore, the error goes to 0 when n goes to ∞ if

1 hn goes to 0 and

2 nhn goes to infinity.

The optimal bandwidth is given by

ĥ⋆
n =

(√
2π

∫ {
f ′′(x)

}2
dx n

)−1/5
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Empirical bandwidth

Since the optimal bandwidth depends on f , unknown, we can use
an approximation like

ĥn =
0.9 min(σ̂, q̂75 − q̂25)

(1.34n)1/5
,

where σ̂ is the empirical standard deviation and q̂25 and q̂75 are the
estimated 25% and 75% quantiles of X.

Note : The values 0.9 and 1.34 are chose for the normal case.

Warning! This is not the defect bandwidth in R
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The perspective of statistical tests

Given a question about F , such as
Is F equal to F0, a known distribution ?

the statistical answer is based on the data

X1, . . . , Xn ∼ F

to decide whether yes or no the question [the hypothesis] is
compatible with this data
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The perspective of statistical tests (cont’d)

A test procedure (or statistical test) ϕ(x1, . . . , xn) is taking
values in {0, 1} (for yes/no)

When deciding about the question on F , there are two types of
errors:

1 refuse the hypothesis erroneously (Type I)

2 accept the hypothesis erroneously (Type II)

Both types of errors must then be balanced
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The perspective of statistical tests (cont’d)

In pratice, a choice is made to concentrate upon type I errors and
to reject the hypothesis only when the data is significantly
incompatibles with this hypothesis.

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

Acceptation

Rejet

To accept an hypothesis after a test only means that the
data has not rejected this hypothesis !!!
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Comparison of distributions

Example (Two equal distributions?)

Given two samples X1, . . . , Xn and Y1, . . . , Ym, with respective
distributions F and G, both unknown
What is the answer to the question

F == G ?
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Comparison of distributions (contd)

Example (Two equal distributions?)

Idea :

Compare the estimates of F and of G,

F̂n(x) =
1

n

n∑

i=1

IXi≤x et Ĝm(x) =
1

m

m∑

i=1

IYi≤x
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The Kolmogorov–Smirnov Statistics
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Evaluation via the difference

K(m, n) = max
x

∣∣∣F̂n(x) − Ĝm(x)
∣∣∣ = max

Xi,Yj

∣∣∣F̂n(x) − Ĝm(x)
∣∣∣
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The Kolmogorov–Smirnov Statistics (2)

Usage :

If K(m, n) “large”, the distributions F and G are significatively
different.
If K(m, n) “small”, they cannot be distinguished on the data
X1, . . . , Xn and Y1, . . . , Ym, therefore F = G is acceptable

[Kolmogorov–Smirnov test]

With R, ks.test(x,y)
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Calibration of the test

For m and n fixed, if F = G, K(m, n) has a fixed distribution for
all F ’s.
It is thus always possible to reduce the problem to the comparison
of two uniform samples and to use simulation to approximate the
distribution of K(m, n) and of its quantiles.

m=200,n=200

0.05 0.10 0.15

0
5

10
15 Valeur

 observee

Quantile
 a 95%
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Calibration of the test (cont’d)

If the observed K(m, n) is above the 90 or 95 % quantile of
K(m, n) under H0 the value is very unlikely

if F = G

and the hypothesis of equality of both distributions is rejected.
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Calibration of the test (cont’d)

Example of R output:
Two-sample Kolmogorov-Smirnov test
data: z[, 1] and z[, 2]
D = 0.05, p-value = 0.964
alternative hypothesis: two.sided

p-value = 0.964 means that the probability that K(m, n) is larger
than the observed value D = 0.05 is 0.964, thus that the observed
value is small under the distribution of K(m, n) : we thus accept
the equality hypothesis.
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Test of independance

Example (Independence)

Testing for independance between two rs’s X and Y based on the
observation of the pairs (X1, Y1), . . . , (Xn, Yn)
Question

X ⊥ Y ?
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Rank test

Idea:

If the Xi’s are ordered

X(1) ≤ . . . X(n)

the ranks Ri (orders after the ranking of the Xi’s) of the
corresponding Yi’s

Y[1], . . . , Y[n],

must be completely random.

In R, rank(y[order(x)])
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Rank test (cont’d)

Rank: The vector
R = (R1, . . . , Rn)

is called the rank statistic of the sample (Y[1], . . . Y[n])
Spearman’s statistic is

Sn =
n∑

i=1

i Ri

[Correlation between i and Ri]
It is possible to prove that, if X ⊥ Y ,

E[Sn] =
n(n + 1)2

4
var(Sn) =

n2(n + 1)2(n − 1)

144
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Spearman’s statistic

The distribution of Sn is available via [uniform] simulation or via
normal approximation

Distribution de S sur
 500 echantillons de 200 points
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Recentred version of Spearman’s statistics and normal
approximation
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Spearman’s statistic (cont’d)

It is therefore possible to find the 5% and 95% quantiles of Sn

through simulation and to decide if the observed value of Sn is
in-between those quantiles ( = Accept independance) or outside (
= Reject independance)
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Multinomial tests

Example (Chi-square test)

An histogram representation brings a robustified answer to testing
problems, like

Is the sample X1, . . . , Xn normal N (0, 1) ?

Idea:

Replace the original problem by its discretised version on intervals
[ai, ai+1]

Is it true that

P (Xi ∈ [ai, ai+1]) =

∫ ai+1

ai

exp(−x2/2)√
2π

dx
def
= pi ?
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Principle

Multinomial modelling

The problem is always expressed through a multinomial distribution

Mk

(
p0
1, . . . , p

0
k

)

or a family of multinomial distributions

Mk (p1(θ), . . . , pk(θ)) θ ∈ Θ
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Examples

For testing the adequation to a standard normal distribution,
N (0, 1), k is determined by the number of intervals [ai, ai+1]
and the p0

i ’s by

p0
i =

∫ ai+1

ai

exp(−x2/2)√
2π

dx

For testing the adequation to a normal distribution, N (θ, 1),
the pi(θ) are given by

pi(θ) =

∫ ai+1

ai

exp(−(x − θ)2/2)√
2π

dx
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Examples (cont’d)

For testing the independance between two random variables,
X et Y ,

X ⊥ Y ?

k is the number of cubes [ai, ai+1] × [bi, bi+1], θ is defined by

θ1i = P (X ∈ [ai, ai+1]) θ2i = P (Y ∈ [bi, bi+1])

and

pi,j(θ)
def
= P (X ∈ [ai, ai+1], Y ∈ [bi, bi+1])

= θ1i × θ2j
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Chi-square test
A natural estimator for the pi’s is

p̂i = P̂ (X ∈ [ai, ai+1]) = F̂n(ai+1) − F̂n(ai)

[See bootstrap]
The chi-square statistic is

Sn = n
k∑

i=1

(p̂i − p0
i )

2

p0
i

=

k∑

i=1

(n̂i − np0
i )

2

np0
i

when testing the adequation to a multinomial distribution

Mk

(
p0
1, . . . , p

0
k

)



New operational instruments for statistical exploration (=NOISE)

Rudiments of Nonparametric Statistics

Nonparametric tests

Chi-square test (cont’d)

and

Sn = n
k∑

i=1

(p̂i − pi(θ̂))
2

pi(θ̂)

=

k∑

i=1

(n̂i − npi(θ̂))
2

npi(θ̂)

when testing the adequation to a family of multinomial
distributions

Mk (p1(θ), . . . , pk(θ)) θ ∈ Θ
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Approximated distribution

For the adequation to a multinomial distribution, the distribution
of Sn is approximately (for large n’s)

Sn ∼ χ2
k−1

and for the adequation to a family of multinomial distributions,
with dim(θ) = p,

Sn ∼ χ2
k−p−1
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Distribution of Sn for 200 normal samples of 100 points and a
test of adequation to N (0, 1) with k = 4
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Use and limits

The hypothesis under scrutiny is rejected if Sn is too large for a
χ2

k−1 or χ2
k−p−1 distribution

[In R, pchisq(S)]
Convergence (in n) to a χ2

k−1 (or χ2
k−p−1) distribution is only

established for fixed k and (ai). In pratice, k and (ai) are
determined by the observations, which reduces the validity of the
approximation.
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