Some common tune(s)

- Real inverse problems with enormous interest
- Huge amounts of data and large dimensions
- Limited use of prior information (?)
- Modified MCMC algorithms
- Multiple levels of [Gaussian, always Gaussian] approximations
- Difficulty in recovering induced error [getting out of the model]
Ozone monitoring

Inverse Problem: Model defined in terms of untractable integrals of gas profiles

\[
T_{\lambda,l}^{\text{abs}} = \exp \left[- \int \sum_{\text{gas}} \alpha_{\lambda}^{\text{abs}} \{ z(s) \} \rho_{\lambda}^{\text{abs}} \{ z(s) \} ds \right]
\]

Gaussian observations

\[
y_{\lambda,l} = T_{\lambda,l}^{\text{abs}} T_{\lambda,l}^{\text{ref}} + \epsilon_{\lambda,l}, \quad \epsilon_{\lambda,l} \sim \mathcal{N}(0, \sigma_{\lambda,l}^2)
\]

O[450 occultations \times 1400 wavelengths \times 70 altitudes]
From waves to winds

Inverse Problem: Recover \mathbf{V} (winds) from \mathbf{S}^0 (waves)
Forward model

\[s^0_i = (\hat{a}_0(v_i), \hat{a}_1(v_i), \hat{a}_2(v_i), \hat{a}_3(v_i), \hat{a}_4(v_i)) \begin{pmatrix} 1 \\ \cos \chi \\ \cos 2\chi \\ \cos 3\chi \\ \cos 4\chi \end{pmatrix} + \epsilon \]

\[\mathcal{O}[60,000] \]
Approximations [Gaussian, so Gaussian]

Ozone: Cross-sections

\[T_{\lambda,s}^{\text{abs}} = \exp \left[\sum_{\text{gas}} \alpha_{\lambda,l}^{\text{abs}} N_l^{\text{abs}} \right] \]

[Spectral inversion]

\[N_l^{\text{abs}} = \int_l \rho_{\text{abs}} \{z(s)\} \, ds \]

[Vertical inversion]

Approximate likelihood

\[\exp \left\{ - (T_l(N_l) - y_l)^T C_l^{-1} (T_l(N_l) - y_l) / 2 \right\} \]
Waves/Winds: Inverse model

\[v_i | s_i^0 \sim \sum_{k=1}^{4} \alpha_k(s_i^0) \mathcal{N}_2(\mu_k(s_i^0), \sigma_k^2(s_i^0)I_2) \]

[Neural network estimation of \(\alpha_k, \mu_k, \sigma_k \)'s]

- Why 4?!
- Which learning set?
Waves/Winds: Inverse model

\[\mathbf{v}_i | s_i^0 \sim \sum_{k=1}^{4} \alpha_k(s_i^0) \mathcal{N}_2(\mu_k(s_i^0), \sigma_k^2(s_i^0)I_2) \]

[Neural network estimation of \(\alpha_k, \mu_k, \sigma_k \)'s]

- Why 4?!

- Which learning set?

Note: A mixture model with noisy observations is still a mixture model

\[\sum_{k=1}^{4} \alpha_k \mathcal{N}_2(\mu_k, (\sigma_k^2 + \tau^2) I_2) \]
Where is the difficulty in

\[p(V|S^0) \propto \prod_i \frac{p(v_i|s^0_i)}{p(v_i)} p(V) \]

since

1. the function can be computed analytically
2. a missing data structure can be introduced
3. modes need not be known in advance
Besides,

1. how can modes be identified in 60,000 dimensions?

2. is bimodality a simple consequence of direction lack of identifiability?!
Which prior modelling?!

Effect of the Gaussian assumption

Ozone: Vague and limited
Seems to only correspond to the discretization/regularization choice

\[x_i = \hat{x}_i \pm \varepsilon^{\text{reg}} \sqrt{\Delta z^{-1}} \]
Which prior modelling?!

Effect of the Gaussian assumption

Ozone: Vague and limited
Seems to only correspond to the discretization/regularization choice

\[x_i = \hat{x}_i \pm \varepsilon^{\text{reg}} \sqrt{(\Delta z^{-1})} \]

Waves/Winds: Prior information = NWP forecasts or (?) Gaussian
Use of seasonal data only through the covariance matrix
Modified MCMC

Ozone: Adaptive covariance structure

\[C_t = s_d \text{cov}(X_1, \ldots, X_t) + s_d \epsilon I_d \]

[Haario, Saksman & Tamminen, 2003]
1. **For practical purposes, relevance of ergodic theorem?**

Adaptativity can be embedded in a grand-scale scheme

\[
(X^{(t)}, \Sigma^{(t)}) \overset{\mathcal{L}}{\rightarrow} \pi(X) \times |\Sigma|^{-\alpha} \exp(-\alpha \text{tr}(\Sigma^{-1})
\]

and regular Markovian updating

\[
\Sigma^{(t)} = \beta \Sigma^{(t-1)} + (1 - \beta) \left\{ (X^{(t)})^T X^{(t)} + \varepsilon I_d \right\}
\]

How can SCAM one-dimensional update be efficient in

Lack of covariance structure

Does it really work better?!

Is SCAM a scam?!
1. **For practical purposes, relevance of ergodic theorem?**

Adaptativity can be embedded in a grand-scale scheme

\[(X^{(t)}, \Sigma^{(t)}) \sim \pi(X) \times |\Sigma|^{-\alpha} \exp(-\alpha \text{tr}(\Sigma^{-1}))\]

and regular Markovian updating

\[\Sigma^{(t)} = \beta \Sigma^{(t-1)} + (1 - \beta) \left\{ (X^{(t)})^TX^{(t)} + \varepsilon I_d \right\}\]

2. how can SCAM one-dimensional update be efficient in **high-D**?

 [Lack of covariance structure]
1. **For practical purposes, relevance of ergodic theorem?**

 Adaptativity can be embedded in a grand-scale scheme

 $$(X^{(t)}, \Sigma^{(t)}) \overset{\mathcal{L}}{\sim} \pi(X) \times |\Sigma|^{-\alpha} \exp -\alpha \text{tr}(\Sigma^{-1})$$

 and regular Markovian updating

 $$\Sigma^{(t)} = \beta \Sigma^{(t-1)} + (1 - \beta) \left\{ (X^{(t)})^T X^{(t)} + \varepsilon I_d \right\}$$

2. how can SCAM one-dimensional update be efficient in high-D?

 [Lack of covariance structure]

3. Does it really work better?!

 [Is SCAM a scam?!]
\textbf{\(T\)-posterior example}

For a \(t\)-distribution posterior

\[\prod_{j=1}^{n} \left[\nu + (x_j - \theta(t))^2 \right]^{-(\nu+1)/2}, \]

proposal based on variance of the previous values of the chain,

\[\sigma_t^2 = \frac{5}{t} \sum_{i=1}^{t} (\theta(i) - \hat{\mu}_t)^2 \]

or on ridge-stabilised version

\[\tilde{\sigma}_t^2 = \frac{5}{t} \sum_{i=1}^{t} (\theta(i) - \hat{\mu}_t)^2 + \epsilon \]

Similar behaviour of the output
Less accurate if the mean is also updated from the empirical mean

\[\hat{\mu}_t = \frac{1}{t} \sum_{i=1}^{t} \theta^{(i)} \]

[Haario et al. stabilisation = ?]
Influence of the original variance
Waves/Wind:

1. Mode-jump ($J = 1$) with probability 0.05

2. Random-walk proposal V^* with drift μ_J ($\mu_0 = 0$)

3. Acceptance probability

$$\alpha = \frac{p(V^*|S^0)}{p(V_t|S^0)} \frac{\varphi(V_t - V^* \pm \mu_J)}{\varphi(V^* - V_t - \mu_J)}$$
Inefficient and useless:

1. correct $\varphi(\mathbf{V}_t - \mathbf{V}^* \pm \mu J) / \varphi(\mathbf{V}^* - \mathbf{V}_t - \mu J)$ ratio?

2. detailed balance uncalled for

3. multiscale proposals (high-D troubles of same magnitude)

4. Rao–Blackwellisation $0.5 \mathcal{N}(\mathbf{V}_t, \Sigma) + 0.5 \mathcal{N}(\mathbf{V}_t + \mu J, \Sigma)$

5. delayed rejection

6. particle systems

7. population Monte Carlo

Iterated sequential processing reminiscent of Gibbs sampling
More questions

Ozone:

1. Influence of the prior distribution on the $N_l^{(i)}$'s ?

2. Assessment that convergence is *not* a problem ?

3. How is the problem in its original form (1) solved ?
More questions

Ozone:

1. Influence of the prior distribution on the $N_l^{(i)}$'s ?
2. Assessment that convergence is not a problem ?
3. How is the problem in its original form (1) solved ?

Waves/Wind:

1. Multiple levels of Gaussian approximations, but no clear assessment of the effect of these approximations
2. No clear quantitative assessment of the computational difficulties
Conclusion

- Very real and very interesting problems
- Worthy illustration of Statistical inference in huge dimensions
- Adapted and adaptive MCMC algorithms with more universal bearings

I propose the vote of thanks!