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E.T. Jaynes

E.T. Jaynes (1922–1998)

Professor of Physics at Washington University
in St. Louis. He wrote extensively on statistical
mechanics and on foundations of probability
and statistical inference, initiating in 1957 the
MaxEnt interpretation of thermodynamics, as
being a particular application of more general
Bayesian/information theory techniques.
In 1963, together with Fred Cummings, he
modeled the evolution of a two-level atom in
an electromagnetic field, in a fully quantized
way. This model is known as the
Jaynes–Cummings
model. [Wikipedia]
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E.T. Jaynes

Jaynes and Bayesian statistics

Jaynes strongly promoted the
interpretation of probability
theory as an extension of logic. A
particular focus of his work was
the construction of logical
principles for assigning prior
probability distributions; see the
principle of maximum entropy,
the principle of transformation
groups and Laplace’s principle of
indifference. [Wikipedia]
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E.T. Jaynes

Jaynes and Probability Theory

Although started in 1956, the book Probability
Theory was published postumously, in 2003,
thanks to the editing of Larry Bretthorst.
Jaynes planned two volumes with applications
and computer programs (“written in a
particularly obscure form of Basic”).
Main aim of the book is to present probability
theory as extended logic. Contains Bayesian
methods and the Principle of maximum
entropy.
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Against Bourbaki

Foundations of Probability Theory

“We find ourselves, to our own surprise, in agreement
with Kolmogorov” – E.T. Jaynes, p.xxi

“On many technical issues we disagree strongly with de
Finetti. It appears to us that his way of treating infinite
sets has opened up a Pandora’s box of useless and
unecessary paradoxes.” – E.T. Jaynes, p.xxi

“We sail under the banner of Gauß, Kronecker, and
Poincaré rather than Cantor, Hilbert, and Bourbaki.” –
E.T. Jaynes, p.xxii
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Against Bourbaki

Foundations of Probability Theory (2)

“There are no really trustworthy standards of rigor in a
mathematics that embraced the theory of infinite sets.” –
E.T. Jaynes, p.xxvii
“Paradoxes are avoided automatically: they cannot arise
from correct application of our basic rules, because only
finite sets and infinite sets that arise as well-defined and
well-behaved limits of finite sets.” – E.T. Jaynes, p.xxii

Refusal to use measure theory as in e.g. Feller (1966, vol. 2),
although using limits leads to inconsistencies and dependence on a
specific σ−algebra.
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Against Bourbaki

Foundations of Probability Theory (3)

“It is ambiguous until we specify exactly what kind of
limiting process we propose to use.” – E.T. Jaynes, p.108
“Consideration of a continuous variable is only an
approximation to the exact discrete theory.” – E.T.
Jaynes, p.109

The everything is finite assumption gives some intuition but breaks
down in complex problems.
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Against Bourbaki

Further squibbles

“...inappropriate definition of the term ‘function’. A
delta-function is not a mapping from any set into any
other.” – E.T. Jaynes, p.668
“The issue has nothing to do with mathematical rigor; it
is simply one of notation.” – E.T. Jaynes, p.112

This leads Jaynes to use delta-functions in densities as, e.g. in
(4.65), w/o reference to a dominating measure.

g(f |X ) =
10

11
(−10−6)δ(f−1

6
)+

1

11
(−10−6)δ(f−1

3
)+10−6δ(f− 99

100
)

confusing functions with measures...
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Elementary hypothesis testing

Binary choice and Bayesian principles

A single hypothesis

“To form a judgement about the likely truth or falsity of
any proposition A, the correct procedure is to calculate
the probability that A is true.” (p.86)

The first part of Chapter 4 is about testing a null hypothesis versus
its complement H1

Introduction of prior probabilities, conditional on “other
information” X

Immediate call to posterior probabilities and Bayes formula

Use of the likelihood
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Elementary hypothesis testing

Binary choice and Bayesian principles

Bayes Theorem

Bayes theorem = Inversion of probabilities

If A and E are events such that P(E ) 6= 0, P(A|E ) and P(E |A)
are related by

P(A|E ) =

P(E |A)P(A)

P(E |A)P(A) + P(E |Ac)P(Ac)

=
P(E |A)P(A)

P(E )

[Thomas Bayes (?)]
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Elementary hypothesis testing

Binary choice and Bayesian principles

Who is Thomas Bayes?

Reverend Thomas Bayes (ca. 1702–1761)

Presbyterian minister in Tunbridge Wells (Kent) from 1731, son of
Joshua Bayes, nonconformist minister. Election to the Royal
Society based on a tract of 1736 where he defended the views and
philosophy of Newton.

His sole probability paper, “Essay Towards Solving a Problem in
the Doctrine of Chances”, published posthumously in 1763 by
Pierce and containing the seeds of Bayes’ Theorem.
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Elementary hypothesis testing

Binary choice and Bayesian principles

Jaynes’ introduction to Bayesian principles

“Almost always the robot will have prior
information. (...)

Any additional information
beyond the immediate data is by definition ‘prior
information (...) The term ‘a-priori’ was introduced
by Immanuel Kant to denote a proposition whose
truth can be known independently of experience,
which is what we do not mean here. (...) There is
no universal rule for assigning prior. At present,
four fairly general principles are known—group
invariance, maximum entropy, marginalization, and
coding theory.” (p. 87-88)
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Elementary hypothesis testing

Binary choice and Bayesian principles

Posterior probability

“The derivation [of Bayes’ theorem] does not require any
new principle beyond the product rule (...) One man’s
prior probability is another man’s posterior probability
(...) There only one kind of probability.” (p.88-89)

The posterior probability of the hypothesis H is given by

P(H|DX ) = P(H|X )
P(D|HX )

P(D|X )

c© If P(H|DX ) is close to one or zero, conclusion about the
“truth” of H but if close to 1/2, need of more evidence.
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Elementary hypothesis testing

Binary choice and Bayesian principles

Likelihood [principle]

“P(D|HX ) in its dependence on D for fixed H is called
the ‘sampling distribution’ (...) and in its dependence on
H for fixed D is called the ‘likelihood’ (...) A likelihood
L(H) is not itself a probability for H; it is a dimensionless
function which, when multiplied by a prior probability and
a normalization factor may become a probability.
Because of this, constant factors are irrelevant.” (p.89)
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Elementary hypothesis testing

Binary choice and Bayesian principles

Odds ratio

Probability ratio

P(H|DX )

P(H̄|DX )
=

P(H|X )P(D|XH)

P(H̄|X )P(D|X H̄)

= O(H|DX )

= O(H|X )
P(D|HX )

P(D|H̄X )

defined as the ‘odds’ or posterior odds.
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Elementary hypothesis testing

Binary choice and Bayesian principles

Evidence

Definition of base 10 logarithm transform as evidence:

e(H|DX ) = 10 log10 O(H|DX )

measured in decibels and additive in the data: if D = D1D2 . . .

e(H|DX ) = e(H|X )+10 log10
P(D1|HX )

P(D1|H̄X
+10 log10

P(D2|D1HX )

P(D2|D1H̄X
+· · ·
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Elementary hypothesis testing

Binary choice and Bayesian principles

Jaynes’ widgets

“11 machines turning out widgets (...) ten of which
produce on in six defective [and one machine] one in
three defective.”(p.93)

Goal is to find whether a machine is bad (A) or good (Ā) from n
inspections with nb defective and ng = n − nb non-defective.

e(A|DX ) = e(A|X ) + 3nb − ng = e(A|X ) + n(4fb − 1)

with e(A|X ) = −10db



Probability Theory revisited

Elementary hypothesis testing

Binary choice and Bayesian principles

Jaynes’ widgets

“11 machines turning out widgets (...) ten of which
produce on in six defective [and one machine] one in
three defective.”(p.93)

Goal is to find whether a machine is bad (A) or good (Ā) from n
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Elementary hypothesis testing

Binary choice and Bayesian principles

Lost w/o a loss

“There is nothing in probability theory per se which can
tell us where to put critical levels [on the evidence] at
which we make our decision. This has to be based on
(...) decision theory.” (p.96)

Example:

“If the evidence e(A|HX ) is greater than +0 db, then
reject [and] if it goes as low as -13 db, then accept (...)
Otherwise continue testing.” (p.96)



Probability Theory revisited

Elementary hypothesis testing

Beyond binary

Beyond binary

In case of n > 2 hypotheses H1, . . . ,Hn, the additivity in the
evidence

O(Hi |D1, . . . , dmX ) = O(Hi |X )
P(D1, . . . ,Dm|HiX )

P(D1, . . . ,Dm|H̄iX )

only operates for iid data when

P(D1, . . . ,Dm|H̄iX ) =
m∏
j=1

P(Dj |H̄iX )

which only occurs when “at most one of the data sets Dj can
produce any updating of the probability for Hi” (p.97)
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Elementary hypothesis testing

Beyond binary

Local conclusion

“Probability theory does lead us to a useful procedure for
multiple hypothesis testing, which (...) makes it clear
why the independent additivity cannot, and should not,
hold when n > 2.” (p.98)
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Beyond binary

Question # 1

Question

What sense does it make to relate P(D|HiX ) with P(D|H̄iX )
when there are several hypotheses under comparison?
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Question # 1

Question

What sense does it make to relate P(D|HiX ) with P(D|H̄iX )
when there are several hypotheses under comparison?

“It is always possible to pick two hypotheses and to
compare them only against each other (...) Here we are
going after the solution of the larger problem directly.”
(p.98)
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Elementary hypothesis testing

Beyond binary

Question # 1

Question

What sense does it make to relate P(D|HiX ) with P(D|H̄iX )
when there are several hypotheses under comparison?

c© The evidence is coherent with a posterior probability accounting
for all hypotheses
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Elementary hypothesis testing

Beyond binary

More of the widgets

Suppose the data is made of m = 50 defective widgets in a row.
Beside the good (machine) B, and the bad (machine) A, Jaynes
introduces the ugly (machine) C where the proportion of defectives
is now 99%. His prior evidences are

-10 db for A (1)

+10 db for B (2)

-60 db for C (3)

Then
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P(D|CX ) =

(
99

100

)m

and

P(D|C̄ X ) =
P(D|AX )P(A|X ) + P(D|BX )P(B|X )

P(A|X ) + P(B|X )
= ...
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Elementary hypothesis testing

Beyond binary

More of the widgets

Suppose the data is made of m = 50 defective widgets in a row.
Beside the good (machine) B, and the bad (machine) A, Jaynes
introduces the ugly (machine) C where the proportion of defectives
is now 99%. His prior evidences are

-10 db for A (1)

+10 db for B (2)

-60 db for C (3)

Then

e(C |DX ) = −60 + 10 log10

(
99

100

)m

1

11

(
1

3

)m

+
10

11

(
1

6

)m
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Elementary hypothesis testing

Infinite number of hypotheses

Towards estimation

“Introduction of a continuous range of hypotheses such
that

Hf ≡ the machine is putting out a fraction f bad

(...) calculate the posterior probabilities for various values
of f (...) The extension is so easy.” (p.107)

Continuous random variables processed as mathematical
“approximation[s] to the discrete set theory” (p.109)
Rejection of measure theory (Appendix B) leads to loose handling
of densities, defined as derivatives of cdf’s when the limit is
“well-defined” but incorporating delta functions as well (p.108,
p.111)
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Infinite number of hypotheses

On the nature of priors

When considering a prior on a parameter f , Jaynes stresses that
“what is distributed is not the parameter but the probability (...) f
is simply an unknown constant parameter.” (p.108)

Question #2

Sounds contradictory (from a mathematical viewpoint): what is
the meaning of P(F < f |X ) then?
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Elementary hypothesis testing

Infinite number of hypotheses

Bayes’ theorem redux

“Those who fail to notice this fall into the famous
Borel-Kolmogorov paradox, in what a seemingly
well-posed problem appears to have many different
correct solutions.” (p.110)

Awkward derivation of Bayes’ theorem in the continuous case
based on the approximations

P(F ∈ (f , f + df |X ) = g(f |X )df

and

P(F ∈ (f , f + df |DX ) = g(f |DX )df

substituting continuity to measurability.
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Elementary hypothesis testing

Infinite number of hypotheses

Bayes’ widgets

Using a binomial distribution on the proportion of bad widgets (no
longer hypotheses A, B and C ?),

P(D|Hf X ) = f n(1− f )N−n [∝]

Jayes ends up with Bayes’ historical posterior:

g(f |DX ) =
f n(1− f )N−ng(f |X )∫ 1

0 f n(1− f )N−ng(f |X ) df
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longer hypotheses A, B and C ?),

P(D|Hf X ) = f n(1− f )N−n [∝]

Jayes ends up with Bayes’ historical posterior:

g(f |DX ) =
f n(1− f )N−ng(f |X )∫ 1

0 f n(1− f )N−ng(f |X ) df

Jaynes also considers that hypotheses A, B and C can be
incorporated via ”delta-functions”
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Infinite number of hypotheses

Bayes’ 1763 paper:

Billiard ball W rolled on a line of length one, with a uniform
probability of stopping anywhere: W stops at p.
Second ball O then rolled n times under the same assumptions. X
denotes the number of times the ball O stopped on the left of W .

Bayes’ question:

Given X , what inference can we make on p?
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Elementary hypothesis testing

Infinite number of hypotheses

Bayes’ problem

“This result was first found by an amateur (sic!)
mathematician (...) not Bayes but Laplace who first saw
the result in generality and showed how to use it in
inference.” (p.112)

Modern translation:

Derive the posterior distribution of p given X , when

p ∼ U([0, 1]) and X |p ∼ B(n, p)
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Elementary hypothesis testing

Infinite number of hypotheses

Resolution

Since

P(X = x |p) =

(
n

x

)
px(1− p)n−x ,

P(a < p < b and X = x) =

∫ b

a

(
n

x

)
px(1− p)n−xdp

and

P(X = x) =

∫ 1

0

(
n

x

)
px(1− p)n−x dp,
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Elementary hypothesis testing

Infinite number of hypotheses

Resolution (2)

then

P(a < p < b|X = x) =

∫ b
a

(n
x

)
px(1− p)n−x dp∫ 1

0

(n
x

)
px(1− p)n−x dp

=

∫ b
a px(1− p)n−x dp

B(x + 1, n − x + 1)
,

i.e.
p|x ∼ Be(x + 1, n − x + 1)

[Beta distribution]
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Elementary hypothesis testing

Infinite number of hypotheses

Queer uses (Chapter 5)

“There is not the slightest use in rejecting any hypothesis
unless we can do it in favor of some definite alternative
that better fits the facts.” (p.135)

Disgressions on

Mrs Stewart’s telepathic powers (ESP)

divergence of opinions

discovery of Neptune

horse racing and weather forecasting

Bayesian jurisprudence
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Elementary parameter estimation

Chapter 6: Elementary parameter estimation

1 Goals of the course

2 Elementary hypothesis testing

3 Elementary parameter estimation
Urn parameters
Prior selection
Bernoulli trials
First foray in decision theory
Hierarchical models
Ride in a taxicab
The normal distribution

4 Sufficiency, ancillarity and all that

5 The entropy principle

6 Decision theory
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Elementary parameter estimation

Urn parameters

A simple hypergeometric model

“When the hypotheses become very numerous, as in Ht

(1 ≤ t ≤ n), deciding between the hypotheses and
estimation the index t are practically the same thing.”
(p.149)

Observation of an hypergeometric distribution

p(D|NRI ) =

(
N

n

)−1(R

r

)(
N − R

n − r

)
when both N and R are unknown.

debate on whether or not the data is informative about N

early sections are conditional on N

p(R|DNI ) = p(R|DI )
D|NRI )

D|NI )
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Information on N

“Intuition may lead us to expect that the data can only
truncate the impossible values [of N].” (p.151)

We have
p(N|DI ) ∝ I(N ≥ n) p(N|I )

under the condition

N∑
R=0

(
R

r

)(
N − R

n − r

)
p(R|NI ) = f (n, r)

(
N

n

)
on the prior p(R|NI ).



Probability Theory revisited

Elementary parameter estimation

Urn parameters

Uniform prior

For instance, if p(R|NI ) is uniform,

p(R|DNI ) ∝
(

R

r

)(
N − R

n − r

)
and

N∑
R=0

(
R

r

)(
N − R

n − r

)
1

N + 1
=

1

n + 1

(
N

n

)
so “the data tells us nothing about N, beyond the fact that
N ≥ n.” (p.153)



Probability Theory revisited

Elementary parameter estimation

Urn parameters

Properties of the conditional posterior

The most probable value of R under p(R|DNI ) is

R ′ = (N + 1)
r

n

up to an integer truncation.

To find the mean value, Jaynes notices that

(R + 1)

(
R

r

)
= (r + 1)

(
R + 1

r + 1

)
Hence that

E[R|DNI ] + 1 = (r + 1)

(
N + 1

n + 1

)−1 N∑
R=0

(
R + 1

r + 1

)(
N − R

n − r

)

= (r + 1)

(
N + 1

n + 1

)−1(N + 2

n + 2

)
=

(N + 2)(r + 1)

(n + 2)
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Laplace’s rule of succession

Predictive distribution for the next draw

p(Rn+1|DNI ) =
N∑

R=0

p(Rn+1|RDNI ) p(R|DNI )

=
N∑

R=0

R − r

N − n

(
N + 1

n + 1

)−1 N∑
R=0

(
R

r

)(
N − R

n − r

)
=

r + 1

n + 2
free of N

c© This is Laplace’s succession rule
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Who’s Laplace?

Pierre Simon de Laplace (1749–1827)

French mathematician and astronomer
born in Beaumont en Auge (Normandie)
who formalised mathematical astronomy
in Mécanique Céleste. Survived the
French revolution, the Napoleon Empire
(as a comte!), and the Bourbon
restauration (as a marquis!!).

In Essai Philosophique sur les Probabilités, Laplace set out a
mathematical system of inductive reasoning based on probability,
precursor to Bayesian Statistics.
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French mathematician and astronomer
born in Beaumont en Auge (Normandie)
who formalised mathematical astronomy
in Mécanique Céleste. Survived the
French revolution, the Napoleon Empire
(as a comte!), and the Bourbon
restauration (as a marquis!!).

In Essai Philosophique sur les Probabilités, Laplace set out a
mathematical system of inductive reasoning based on probability,
precursor to Bayesian Statistics.
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Prior selection

Jeffreys’ criticism on uniform prior

The fundamental trouble is that the prior probabilities
1/(N + 1) attached by the theory to the extreme values
are utterly so small that they amount to saying, without
any evidence at all, that it is practically certain that the
population is not homogeneous in respect to the property
to be investigated. (...) Now I say that for this reason
the uniform assessment must be abandoned for ranges
including the extreme values. (Theory of Probability, III,
§3.21)

Explanation: This is a preparatory step for the introduction of
specific priors fitted to point null hypotheses (using Dirac masses).
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Who is Harold Jeffreys?

Wikipedia article

Sir Harold Jeffreys (1891–1989)
Mathematician, statistician,
geophysicist, and astronomer. He
went to St John’s College,
Cambridge and became a fellow
in 1914, where he taught
mathematics then geophysics and
astronomy. He was knighted in
1953 and received the Gold
Medal of the Royal Astronomical
Society in 1937.
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Jaynes’ modification

New prior eliminating boundaries:

p(R|NI1) =
1

N − 1
I(0 < R < N)

but no change in p(R|NI1) if 0 < r < n.
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The noninformative convex posterior

“ Find whether there is any prior that would lead to a
uniform posterior distribution.” (p.159)

Jaynes modifies the prior into

p(R|NI00) =
A

R(N − R)
I(0 < R < N)

which may be constant for some values of (r , n).

Not particularly exciting. but preparation for Haldane’s prior

“As N −→∞, the concave prior approaches an improper
(non-normalizable) one, which must give absurd answers
to some questions.” (p.160)
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Towards hierarchical priors

Introduction of an extra (monkey) parameter g governing the prior
on R

p(R|NI2) =

(
N

R

)
gR(1− g)N−R

Then

p(R|DNI2) ∝
(

N

R

)
gR(1− g)N−R

(
R

r

)(
N − R

n − r

)
=

(
N − n

R − r

)
gR−r (1− g)N−R−n+r

for r ≤ R ≤ N − n + r
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for r ≤ R ≤ N − n + r
c© R − r ∼ B(N − n, g)
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Towards hierarchical priors

Introduction of an extra (monkey) parameter g governing the prior
on R

p(R|NI2) =

(
N

R

)
gR(1− g)N−R

Then

p(R|DNI2) ∝
(

N

R

)
gR(1− g)N−R

(
R

r

)(
N − R

n − r

)
=

(
N − n

R − r

)
gR−r (1− g)N−R−n+r

for r ≤ R ≤ N − n + r
c© The data brings no information about R − r
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Not such a rare occurence

Example (Cauchy vs. Laplace)

Consider

f (x |θ) =
1

π

[
1 + (x − θ)2

]−1

and

π(θ) =
1

2
e−|θ|

The MAP estimator of θ is then always

δ∗(x) = 0

[The Bayesian Choice, Chap. 4]
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Elementary parameter estimation

Bernoulli trials

First occurence of a continuous parameter

“We do not see parameter estimation and hypothesis
testing as fundamentally different activites.” (p.163)
“The condition of the experiment will tell us whether the
order is meaningful or known; and we expect probability
theory to tell us whether it is relevant.” (p.164)

Preparation of the chapter on sufficiency, ancilarity and all that.

Back to Bayes-ics:

θ ∼ U(0, 1) r |θ ∼ B(n, θ)

θ|r , n ∼ Be(r + 1, n − r + 1)
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Haldane’s prior

“By passage to the limit N −→∞, (...) the concave
pre-prior distribution would go into an improper prior for
θ.

p(θ|I ) ∝ 1

θ(1− θ)

for which some sums or integrals would diverge; but that
is not the strictly correct method of calculation (...)
Under very general conditions this limit is well-behaved,
leading to useful results. The limiting improper pre-prior
was advocated by Haldane (1932) in the innocent days
before the marginalization paradox.” (p.165-166)
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Jeffreys’ Haldane’s prior

For a binomial observation, x ∼ B(n, p), and prior
π∗(p) ∝ [p(1− p)]−1, the marginal distribution,

m(x) =

∫ 1

0
[p(1− p)]−1

(
n

x

)
px(1− p)n−xdp

= B(x , n − x),

is only defined for x 6= 0, n.

Missed by Jeffreys:

If a sample is of one type with respect to some property
there is probability 1 that the population is of that type
(Theory of Probability, III, §3.1)
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Noninformative setting

What if all we know is that we know “nothing” ?!

...how can we assign the prior probability when we know
nothing about the value of the parameter except the very
vague knowledge just indicated? (Theory of Probability,
III, §3.1)
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Noninformative distributions

...provide a formal way of expressing ignorance of the
value of the parameter over the range permitted (Theory
of Probability, III, §3.1).

In the absence of prior information, prior distributions solely
derived from the sample distribution f (x |θ)

It says nothing about the value of the parameter, except
the bare fact that it may possibly by its very nature be
restricted to lie within certain definite limits (Theory of
Probability, III, §3.1)

Jaynes’ ignorance priors



Probability Theory revisited

Elementary parameter estimation

Bernoulli trials

Warning

Noninformative priors cannot be expected to represent
exactly total ignorance about the problem at hand, but
should rather be taken as reference or default priors,
upon which everyone could fall back when the prior
information is missing.

[Kass and Wasserman, 1996]
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The stopping rule principle

Another instance of the likelihood principle

“ It is from the data D that we learn both n and r (...)

p(θ|nDI ) = p(θ|DI )

(...) some statisticians claim that the stopping rule does
affect our inference. Apparently, they believe that if a
statistic such as r is not known in advance, then parts of
the sample space referring to false values of r remain
relevant to our inferences, even after the true value of r
becomes known from the data.” (p.167)
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The survey example

A survey about a simple question gets 6 yes and 9 no.

c© Same likelihood but opposed stopping rules

“Inference must depend on the data that was observed,
not on data sets that might have been observed but were
not.” (p.167)
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The survey example

A survey about a simple question gets 6 yes and 9 no.
In a first model, 15 individuals have been selected, out of which 6
replied yes

r ∼ Bin(15, θ)

c© Same likelihood but opposed stopping rules

“Inference must depend on the data that was observed,
not on data sets that might have been observed but were
not.” (p.167)
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Bernoulli trials

The survey example

A survey about a simple question gets 6 yes and 9 no.
In a second model, individuals have been selected until 6 replied yes

N ∼ N eg(15, θ)

c© Same likelihood but opposed stopping rules

“Inference must depend on the data that was observed,
not on data sets that might have been observed but were
not.” (p.167)
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Compound problems

Study of a multilevel model

n ∼ B(N, r)

c ∼ B(n, ϕ)

As N −→∞, NS −→ s, p(n|Nr) −→ exp{−s} snn!

Then
n|ϕcs)− c ∼ Poi(s(1− ϕ))
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First foray in decision theory

Loss functions

“Which estimator is best? Laplace gave a criterion that
we should make that estimate which minimizes the
expected error |α− α?|.”

“Laplace’s criterion was generally rejected in favor of the
least squares methode of Gauss and Legendre; we seek
the estimate that minimizes the expected squares of the
error.” (p.172)
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First foray in decision theory

The quadratic loss

Choice of a loss function

L(θ, d) = (θ − d)2

or
L(θ, d) = ||θ − d ||2

to minimise (a posteriori).
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First foray in decision theory

Proper loss

Posterior mean

The Bayes estimator δπ associated with the prior π and with the
quadratic loss is the posterior expectation

δπ(x) = Eπ[θ|x ] =

∫
Θ θf (x |θ)π(θ) dθ∫
Θ f (x |θ)π(θ) dθ

.

“But thus may not be what we really want (...) the mean
value estimate concentrates its attention most strongly in
avoiding the very large (but also very improbable errors),
at the cost of possibly not doing as well with the far more
likely small errors.” (p.173)
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First foray in decision theory

Jaynes’ criticisms

Sensitivity to outliers: “a single very rich man in a poor
village...”

Influence of fat tails: “quite sensitive to what happens far
away from out in the tails”

Lack of consistency under parameter changes: “the posterior
mean estimate of λ(α) would not in general satisfy
λ? = λ(α?)”
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The absolute error loss

Alternatives to the quadratic loss:

L(θ, d) =| θ − d |,

or

Lk1,k2(θ, d) =

{
k2(θ − d) if θ > d ,

k1(d − θ) otherwise.
(4)

L1 estimator

The Bayes estimator associated with π and (4) is a (k2/(k1 + k2))
fractile of π(θ|x).
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Jaynes’ defence

Robustness of posterior quantiles:

Insensitivity to outliers: “One single very rich man in a poor
village has no effect...”

Lesser influence of fat tails: “an error twice as large only twice
as serious”

Consistency under monotonic [and 1D] parameter changes

Harder to compute but “today the computational problem is
relatively trivial”
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Invariant divergences

Interesting point made by Jeffreys that both

Lm =

∫
|(dP)1/m − (dP ′)1/m|m , Le =

∫
log

dP ′

dP
d(P ′ − P)

...are invariant for all non-singular transformations of x
and of the parameters in the laws (Theory of Probability,
III, §3.10)
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Intrinsic losses

Noninformative settings w/o natural parameterisation : the
estimators should be invariant under reparameterisation

[Ultimate invariance!]

Principle

Corresponding parameterisation-free loss functions:

L(θ, δ) = d(f (·|θ), f (·|δ)),
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Examples

1 the entropy distance (or Kullback–Leibler divergence)

Le(θ, δ) = Eθ
[

log

(
f (x |θ)

f (x |δ)

)]
,

2 the Hellinger distance

LH(θ, δ) =
1

2
Eθ

(√ f (x |δ)

f (x |θ)
− 1

)2
 .
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Examples (2)

Example (Normal mean)

Consider x ∼ N (θ, 1). Then

Le(θ, δ) =
1

2
Eθ[−(x − θ)2 + (x − δ)2] =

1

2
(δ − θ)2,

LH(θ, δ) = 1− exp{−(δ − θ)2/8}.

When π(θ|x) is N (µ(x), σ2), Bayes estimator of θ

δπ(x) = µ(x)

in both cases.
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Examples (3)

Example (Normal everything)

Consider x ∼ N (λ, σ2) then

L2((λ, σ), (λ′, σ′)) = 2 sinh2 ζ + cosh ζ
(λ− λ′)2

σ2
0

Le((λ, σ), (λ′, σ′)) = 2

[
1− sech1/2ζ exp

{
−(λ− λ′)2

8σ2
0 cosh ζ

}]
if σ = σ0e−ζ/2 and σ = σ0e+ζ/2 (III, §3.10, (14) & (15))
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Hierarchy as information

Distinction between iid compound problems (“Mr A”)

ni ∼ p(ni |IA) = I0≤ni<N/N ci ∼ Bin(ni , ϕ)

and common parameter driving all ni ’s (“Mr B”)

s ∼ p(s|IB) = I0≤s≤S0 ni ∼ Poi(s) ci ∼ Bin(ni , ϕ)
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Hierarchy as information

Distinction between iid compound problems (“Mr A”)

p(ni |ϕci IA) =

(
ni

ci

)
ϕci+1(1− ϕ)ni−ci

and common parameter driving all ni ’s (“Mr B”)

p(ni |ci IB) =

(
ni

ci

)
ϕci+1(1− ϕ)ni−ci
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Making sense of limits?

Jaynes’ reasoning starts from

p(ni |IB) =

∫ ∞
0

p(ni |s)p(s|θIB)ds =
1

S0

∫ s0

0

sni exp{−s}
ni !

ni < S0

and considers the limit of the integral when S0 goes to +∞:

p(ni |θIB) =
1

S0
× 1

without bothering about the remaining S0...
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Jeffreys’ prior #1

“Harold Jeffreys (...) suggests that the proper way to
express “complete ignorance” of a continuous variable
known to be positive is to assign uniform probability to
its logarithm.” (p.181)

p(s|IJ) ∝ 1

s
(0 ≤ s <∞)



Probability Theory revisited

Elementary parameter estimation

Hierarchical models

Jaynes’ defence of Jeffreys’prior

“we cannot normalize this, but (...) we can approach this
prior as the limit of a sequence of proper priors. If that
does not yield a proper posterior distribution (...) the
data are too uninformative about either very large s or
very small s.” (p.181)

“There is a germ of an important principle here (...) our
desideratum of consistency, in the sense that equivalent
states of knowledge should be represented by equivalent
probability assignements, uniquely determines the Jeffreys
rule (...) marginalization theory reinforces this by deriving
it Uniquely.” (p.182)

[Why “U”?!]
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probability assignements, uniquely determines the Jeffreys
rule (...) marginalization theory reinforces this by deriving
it Uniquely.” (p.182)

[Why “U”?!]
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The Jeffreys prior

Based on Fisher information

I (θ) = Eθ
[
∂`

∂θT

∂`

∂θ

]
The Jeffreys prior distribution is

π∗(θ) ∝ |I (θ)|1/2

Note

This general presentation is not to be found in ToP! And not all
priors of Jeffreys’ are Jeffreys priors!
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Where did Jeffreys hide his prior?!

Starts with second order approximation to both L2 and Le :

4L2(θ, θ′) ≈ (θ − θ′)TI (θ)(θ − θ′) ≈ Le(θ, θ′)

This expression is therefore invariant for all non-singular
transformations of the parameters. It is not known
whether any analogous forms can be derived from [Lm] if
m 6= 2. (Theory of Probability, III, §3.10)

Main point

Fisher information equivariant under reparameterisation:

∂`

∂θT

∂`

∂θ
=

∂`

∂ηT

∂`

∂η
× ∂η

∂θT

∂η

∂θ
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The fundamental prior

...if we took the prior probability density for the
parameters to be proportional to ||gik ||1/2 [= |I (θ)|1/2], it
could stated for any law that is differentiable with respect
to all parameters that the total probability in any region
of the αi would be equal to the total probability in the
corresponding region of the α′i ; in other words, it satisfies
the rule that equivalent propositions have the same
probability (Theory of Probability, III, §3.10)

Jeffreys never mentions Fisher information in connection with (gik)
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Back to the hierarchy

Jaynes uses Mr B to shows how he learns about n1 from c2, . . .
though s:

p(n1|ϕc1c2IB) ∝ p(n1|ϕc1IB)p(c2|ϕn1IB)

where

p(c2|ϕn1IB) =

∫ ∞
0

p(c2|ϕsIB)p(s|ϕn1IB)ds

=

∫ ∞
0

exp{−sϕ} (sϕ)c2

c2!

exp{−s} sn1

n1!
ds

=

(
n1 + c2

c2

)
ϕc2

(1 + ϕ)n1+c2+1

Hence

p(n1|ϕc1c2IB) =

(
n1 + c2

c1 + c2

)(
2ϕ

1 + ϕ

)c1+c2+1(1− ϕ
1 + ϕ

)n1−c1
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Impact of prior information

“Mr B’s extra information has enabled him to make an
appreciable decrease in his probable error (...) Therefore
any method of inference which fails to to take prior
information into account is capable of misleading us, in a
potentially dangerous way.” (p.187)
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Asymptotic form

As the number of datapoints c1, . . . , cm increases,

p(s|ϕc1 · · · cmIB) =
(mϕ)c++1

c+!
exp{−msϕ}

becomes approximately normal

p(s|ϕc1 · · · cmIB) ≈ exp−c(s − ŝ)2

2s2

Hence in the limit

p(n1|ϕc1 · · · cmIB) −→ exp{−s0(1− ϕ)}
(n1 − c1)!

[s0(1− ϕ)]n1−c1

(i.e. complete knowledge of the true s)
c© Mr B is the winner!
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2s2

Hence in the limit

p(n1|ϕc1 · · · cmIB) −→ exp{−s0(1− ϕ)}
(n1 − c1)!

[s0(1− ϕ)]n1−c1

(i.e. complete knowledge of the true s)
c© Mr B is the winner!



Probability Theory revisited

Elementary parameter estimation

Ride in a taxicab

The tramcar comparison

A man travelling in a foreign country has to change
trains at a junction, and goes into the town, of the
existence of which he has just heard. The first thing that
he sees is a tramcar numbered m = 100. What can he
infer about the number [N] of tramcars in the town?
(Theory of Probability, IV, §4.8)

Famous opposition: Bayes posterior expectation vs. MLE

Exclusion of flat prior on N

Choice of the scale prior π(N) ∝ 1/N

MLE is N̂ = m
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Ride in a taxicab

The tramcar (2)

Under π(N) ∝ 1/N + O(n−2), posterior is

π(N|m) ∝ 1/N2 + O(n−3)

and

P(N > n0|m,H) =
∞∑

n0+1

n−2
/ ∞∑

m

n−2 =
m

n0

Therefore posterior median is 2m

c© No mention made of either MLE or unbiasedness
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Ride in a taxicab

Jaynes’ version

“Here we study a continuous version of the [taxicab]
problem, in which more than a taxi may be in view, and
then state the exact relationship between the continuous
and discrete problems.” (p.191)

Case of a uniform (“rectangular sampling”) variate

p(xi |αI ) = α−1 I(0 ≤ xi ≤ α)

Under a rectangular prior

p(α|I ) = (α1 − α00)−1I(α00 ≤ α ≤ α1)

“if any datum is found to exceed the upper prior bounds,
the data and the prior information would be logically
contradictory.” (p.191)
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Small numbers

The corresponding posterior is (n > 1)

p(α|DI ) =
(n − 1)α−n

α1−n
0 − α1−n

1

I(α0 ≤ α ≤ α1)

where α0 = max{α00, x1, . . . , xn}

The limiting case for n = 1

p(α|DI ) =
α−1

log(α1/α1)
I(α0 ≤ α ≤ α1)

can also be obtained as a limit when n→ 1 “when n is any
complex number” (p.193)

typos

a1 instead of α1 in (6.169) and a0 instead of α0 below.
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Away from Jeffreys’ prior

Question # 3

How comes the limiting case α→∞ is left “as an exercise to the
reader”? While it is an important instance for Jeffreys’ prior...
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A conclusion from Brittany

“The inhabitants from St. Malo [a small
French town on the English channel] are
convinced; for a century, in their village,
the number of deaths at the time of
high tide has been greater than at low
tide (...) common sense demands more
evidence before considering it even
plausible that the tide influences the last
hour of the Malouins.”(p.195)

“In St Malo, the data does not speak for
themselves.”(p.196)

[ c© Nuit Blanche]



Probability Theory revisited

Elementary parameter estimation

Ride in a taxicab

A conclusion from Brittany

“The inhabitants from St. Malo [a small
French town on the English channel] are
convinced; for a century, in their village,
the number of deaths at the time of
high tide has been greater than at low
tide (...) common sense demands more
evidence before considering it even
plausible that the tide influences the last
hour of the Malouins.”(p.195)
“In St Malo, the data does not speak for
themselves.”(p.196)

[ c© Nuit Blanche]



Probability Theory revisited

Elementary parameter estimation

The normal distribution

A defence of the normal distribution (Chapter 7)

“Bayesian inferences using a Gaussian sampling
distribution could be improved upon only by one who had
additional information about the actual errors beyong its
first two moments.”

“For nearly two centuries, the Gaussian distribution has
continued to be, in almost all problems, much easier to
use and to yield better results (more accurate parameter
estimates) than any alternative sampling distribution that
anyone had to suggest.” (p.210)
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The normal distribution

In preparation of the MaxEnt principle

Attempts at justifying the use of the normal distribution,
incl. the CLT and Gauß’ arithmetic mean

Possible to fit a Gaussian with only the first two moments
(§7.6) and links with sufficiency (§7.11)

Pseudo-likelihood arguments (§7.6 & §7.10)

Higher entropy (§7.14)

Question # 4

Why is an higher accuracy of parameter estimates relevant when
the sampling distribution is incorrect? Is it in the asymptotic
variance sense?
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An interesting historical aside

“The starting point of Darwin’s theory of evolution is
precisely the existence of those differences between
individual members of a race of species which
morphologists for the most part rightly neglect.”
W.F. Weldon, Biometrika, 1, p.1
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1 Goals of the course
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3 Elementary parameter estimation

4 Sufficiency, ancillarity and all that
Sufficiency
Ancillarity
Repetitive experiments

5 The entropy principle
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Sufficiency

Ronald Fisher

Ronald Fisher

Meanwhile Ronald Fisher
(1890–1962), had rejected the
Bayesian approach (1922–1924)
and based his work, including
maximum likelihood, on
frequentist foundations (?).
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Sufficiency

Fisher sufficiency

“Unused parts of the data must be irrelevant to the
question we are asking (...) then it would not matter if
they were unknown” (p.244)

Fisher sufficiency defined as

p(x1 . . . xn|θ) = p(r |θ)b(x1, . . . , xn)

(missing comas intentional!)
Criticised by Jaynes: “Fisher’s reasoning that y2, . . . , yn can convey
no information about θ was only a conjecture (...) which did not
use the concepts of prior and posterior probabilities.” (p.245)
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Sufficiency

First illustrations

normal model (§8.2.1)

the “Blackwell–Rao theorem” (§8.2.2) [with a quadratic risk
rather than a generic convex loss]

“not compelling to a Bayesian, because the criterion
of risk is a purely sampling theory notion that
ignores prior information.” (p.248)

counterexample of the Cauchy distribution
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Sufficiency

First illustrations

normal model (§8.2.1)

the “Blackwell–Rao theorem” (§8.2.2) [with a quadratic risk
rather than a generic convex loss]

“not compelling to a Bayesian,∗ because the
criterion of risk is a purely sampling theory notion
that ignores prior information.” (p.248)

counterexample of the Cauchy distribution

∗It is clearly compelling for a computational Bayesian!
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Sufficiency

Generalised sufficiency

“The property R [of factorizing through a function r of
the data] may hold under weaker conditions that depend
on which prior we assign. Thus the notion of sufficiency
which originated in the Bayesian consideration of Laplace
actually has a wider meaning in Bayesian inference.”
(p.249)

Fairly interesting concept, which leads to an integral equation on
the prior f (θ) when y2, . . . , yn is a completion of the sufficient
statistic r :∫

Θ

{
g(y |θ)

∂g(y |θ′)
∂yi

− g(y |θ′)∂g(y |θ)

∂yi

}
f (θ′)dθ′ = 0
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Sufficiency

Prior dependent sufficiency

“If there are non-negative solutions [in f ] they will
determine a subclass of priors for which r would play the
role of a sufficient statistic. [It is a] possibility that, for
different priors, different functions r(x1, . . . , xn) of the
data may take on the role of sufficient statistics.” (p.249)

Quite compelling argument from Jaynes:

“As soon as we think of probability distributions as
carriers of information [it is] trivial and obvious. A piece
of information in the data makes a difference in our
conclusions only when it tells us something that the prior
information does not.” (p.249)
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Sufficiency

Formal idea?

Question #4

There is no illustration of this generalised sufficiency, is it because
nothing except the trivial example of a Dirac point mass makes
sense?

Question #5

Is sufficiency a sampling property in that it must hold for all
datasets and not only for the observed one?
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Sufficiency

The case of nuisance parameters

If one of the parameters θ2 is a nuisance parameter, the weaker
requirement would be that p(θ1|DI ) [with I curiously missing!]
only depends on r(x1, . . . , xn).

Partial sufficiency has however been know to suffer from
paradoxes, as exposed in Basu (1985).
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Sufficiency

The Likelihood Principle

Derivation of

LP: the likelihood function L(D) from data D contains
all the information about θ that is contained in D.

[Barnard, 1947]

from

CP: Recognition of an experiment that might have been
performed, but was not, cannot tell us anything about θ.

[Birnbaum, 1962]

“It is important to note that the likelihood principle
refers only to the context of a specific model which is not
being questioned.” (p.252)

[Preparation of model choice]
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Ancillarity

Obvious concept supplementing sufficiency: a statistic z is ancillary
if p(z |θI ) = p(z |I ) and conditioning upon any ancillary statistic
provides a more informative distribution.

Not so obvious for Jaynes:
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Ancillarity

Obvious concept supplementing sufficiency: a statistic z is ancillary
if p(z |θI ) = p(z |I ) and conditioning upon any ancillary statistic
provides a more informative distribution.

Not so obvious for Jaynes:

“We do not know Fisher’s private reason for imposing
this independence [on θ] (...) What Fisher’s procedure
accomplishes is nothing at all: any method of inference
that respects the likelihood principle will lead to just the
same inferences about θ.” (p.253)
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Ancillarity

Ancillarity

Obvious concept supplementing sufficiency: a statistic z is ancillary
if p(z |θI ) = p(z |I ) and conditioning upon any ancillary statistic
provides a more informative distribution.

Not so obvious for Jaynes:

“It is the width of the likelihood function from the one
dataset that we actually have that tells us the accuracy
of the estimate from that dataset. For a Bayesian the
question of ancillarity never comes up at all.”(p.254)
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Ancillarity

Generalised ancillarity

Introduction of extra data Z = (z1, . . . , zm) such that

p(θ|ZI ) = p(θ|I )

Then

p(θ|DZI ) = p(θ|I )
p(D|θZI )

p(D|ZI )

and everything is conditional on Z .

[What’s the point?!]
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Ancillarity

AA=A

Discussion on using the data “twice” leading to

p(θ|EDI ) = p(θ|DI ) if p(E |θDI ) = 1

[a constant would work as well, i.e. turning D into a sufficient
statistic for ED]

Relates to criticisms of data dependent priors, empirical Bayes,
Aitkin’s (1991) posterior distribution of the likelihood, &c.
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Repetitive experiments

On frequency vs. probability (Chapter 9)

“A frequency is a factual property of the real world that
we measure or estimate. The phrase ‘estimating a
probability’ is just as much an incongruity as ‘assigning a
frequency’. The fundamental, inescapable distinction
between probability and frequency lies in this relativity
principle: probabilities change when we change our state
of knowledge, frequencies do not.” (p.292)
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Repetitive experiments

First steps towards entropy

Given a state-space G = {g1, . . . , gm}, definition of a Gibbs-like
distribution

p(gi ) = exp{−λgi}/Z (λ)

with Z (λ) the partition function.
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Repetitive experiments

Gibbs entropy maximisation

Frequencies fj that maximise entropy

−
∑
j

fj log fj

under constraint
Ḡ =

∑
fjgj

are given by
f ?j = exp{−λgi}/Z (λ)

with λ given by constraint
[Alternative Lagrangian derivation]
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The entropy principle

Chapter 11: Discrete prior probabilities: the entropy
principle

5 The entropy principle
Entropy
Ignorance priors
Uniform priors
Transformation groups
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Entropy

Entropy desideratas

Jaynes introduces the entropy by looking for a measure of
uncertainty associated with a probability distribution (p1, . . . , pn)
that is

numerical, H(p1, . . . , pn)

continuous in the pi ’s

naturally increasing in the sense that H(1/n, . . . , 1/n) is
increasing with n

consistent [?]

For instance, if moving from (p1, q = 1− p1) to (p1, p2, p3).
consistency means

H2(p1, q) = H2(p1, q) + qH2

(
p2

q
,

p3

q

)
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Exercise à la Jaynes

Exercise 11.1

It seems intuitively that the most general condition of consistency
would be a functional equation which is satisfied by any monotonic
increasing function of Hn. But this is ambiguous unless we say
something about how the monotonic functions for different n are
to be related; is it possible to invoke the same function for all n?
Carry out some new research in this field by investigating this
matter; try either to find a possible form of the new functional
equations, or to explain why this cannot be done.
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Consequences

Solving the above equation in the general case

H(p1, . . . , pn) = H(w1, . . . ,wr )+w1H

(
p1

w1
, . . . ,

pk
wk

)
+w2H

(
pk+1

w2
, . . . ,

pk+m

w2

)
+· · ·

leads to the functional equation

h(
∑

ni ) = H

(
n1∑

ni
, . . . ,

nn∑
ni

)
+
∑
i

ni∑
nj

h(ni )

and to the entropy

H(p1, . . . , pn) = −
∑
i

pi log(pi )
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Properties

Solution unique up to the choice of a logarithmic basis

“in accordance with Gödel’s theorem, one cannot prove that it
actually is consistent” (p.350)

“many years of use of the maximum entropy has not revealed
any inconsistency” (p.351)



Probability Theory revisited

The entropy principle

Entropy

Maximum entropy solution

Theorem

For a finite state space X = {x1, . . . , xn}, the distribution
p = (p1, . . . , pn) that maximises the entropy H(p1, . . . , pn) under
the moment constraints

n∑
i=1

pi fk(xi ) = Fk 1 ≤ k ≤ m

is given by

pi = exp

−λ0 −
m∑
j=1

λj fj(xi )


where the λj ’s are determined by the constraints and

λ0 = log Z (λ1, . . . , λm)
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Maximum entropy solution

Proof]

Introduce Lagrange multipliers

h(p1, . . . , pn;λ1, . . . , λm) = −
∑
i

pi log(pi )− (λ0 − 1)
∑
i

pi −
∑
j

λj

{∑
i

pi fj(xi )− Fj

}

and take derivatives

∂h

∂pi
= − log pi − 1− λ0 + 1−

∑
j

λj fj(xi ) = 0
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Jaynes’s worry

“Our Lagrange multiplier arguments has the nice feature
that it gives us the answer instantaneously. It has the
bad feature that after we done (sic!) it, we’re not quite
sure it is the answer (...) There would always be a little
grain of doubt remaining if we do only the variational
problem.”(p.357)

Question 5

What about the convexity of the entropy function H(p1, . . . , pn)?
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About the Lagrange multipliers

Due to the constraints,

Fk = −∂ log Z (λ1, . . . , λm)

∂λk

If

S(F1, . . . ,Fm) = log Z (λ1, . . . , λm) +
m∑

k=1

λkFk

then

λk =
∂S(F1, . . . ,Fk)

∂Fk

“in which λk is given explicitely” (p.359)

Question 6

In which sense is S(F1, . . . ,Fk) an explicit function of the Fk ’s?
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Objections [in which world?!]

“Maximum uncertainty is a negative thing”

“Probabilities obtained by maximum entropy cannot be
relevant to physical predictions because they have nothing to
do with frequencies”

“The given data {F1, . . . ,Fn} are not averages, but definite
measured numbers”

“Different people have different information (...) the results
are basically arbitrary” (p.366)
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A compelling argument?

Consider N multinomial trials on X = {x1, . . . , xn} with outcome
(n1, . . . , nn).
Under (empirical) constraints like

n∑
i=1

ni fk(xi ) = NFk 1 ≤ k ≤ m

that are insufficient to specify the pi ’s if m < n, what is the best
choice for (p1, . . . , pn) ?
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A not-so-compelling argument

Jaynes argues that the choice of (p1, . . . , pn) should maximise the
number of occurences of (n1, . . . , nn), i.e.

W =
N!

(Np1)! · · · (Npn)!

Then another choice p′ = (p′1, . . . , p
′
n) leads to

W

W ′ −→ exp
{

N[H(p)− H(p′)]
}

i.e. “the frequency predicted by maximum entropy can be realized
in overwhelmingly many more ways than any other” (p.368)
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Ignorance priors

Noninformative 101

“The natural starting point in translating a number of
pieces of prior information is the state of complete
ignorance (...) When we advance to complicated
problems, a formal theory of how to find ignorance priors
becomes more and more necessary”(p.373)

“Some object to the very attempt on the ground that a
state of complete ignorance does not exist.”(p.373)
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Useless jibe

“There is a large Bayesian community whose members
call themselves ‘subjective Bayesians’, who have settled
in a position intermediate between ‘orthodox’ statistics
and the theory expounded here.”(p.372)

“Having specified the prior information, we then have the
problem of translating that information into a specific
prior probability assignment, a formal translation process
(...) only dimly perceived in subjective Bayesian
theory.”(p.373)
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Entropy for continuous distributions

Jaynes points out that the quantity

H = −
∫

p(x) log p(x)dx

depends on the parameterisation, hence a difficulty to expand
Shannon’s information beyond the discrete case.

[Necessary but awkward] introduction of a reference measure m(x)
in

H = −
∫

p(x) log

[
p(x)

m(x)

]
dx
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The unavoidable measure

While Jaynes considers m(·) to be well-enough behaved to allow
for Riemann integrals, the choice of the reference measure is
paramount to the definition of both the entropy and the maximum
entropy priors.

“If the parameter space is not the result of any obvious
limiting process what determines the proper measure
m(x)? This is the shortcoming from which the maximum
entropy has suffered.”(p.376)
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for Riemann integrals, the choice of the reference measure is
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Uniform prior on R

If the parameter may have any value in a finite range, or
from −∞ to +∞, its prior probability should be taken as
uniformly distributed (Theory of Probability, III, §3.1).
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Normal illustration

Example (Flat prior)

If x ∼ N (θ, 1) and π(θ) = $, constant, the pseudo marginal
distribution is

m(x) = $

∫ +∞

−∞

1√
2π

exp
{
−(x − θ)2/2

}
dθ = $

and the posterior distribution of θ is

π(θ | x) =
1√
2π

exp

{
−(x − θ)2

2

}
,

i.e., corresponds to a N (x , 1) distribution.
[independent of ω]
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“Complete ignorance”

Warning – Warning – Warning – Warning – Warning

The mistake is to think of them [non-informative priors] as
representing ignorance

[Lindley, 1990]
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Over-interpretation

If we take
P(dσ|H) ∝ dσ

as a statement that σ may have any value between 0 and
∞ (...), we must use ∞ instead of 1 to denote certainty
on data H. (..) But (..) the number for the probability
that σ < α will be finite, and the number for σ > α will
be infinite. Thus (...) the probability that σ < α is 0.
This is inconsistent with the statement that we know
nothing about σ (Theory of Probability, III, §3.1)

mis-interpretation
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Over-interpretation (2)

Example (Flat prior (2))

Consider a θ ∼ N (0, τ2) prior. Then, for any (a, b)

lim
τ→∞

Pπ (θ ∈ [a, b]) = 0

...we usually have some vague knowledge initially that
fixes upper and lower bounds [but] the truncation of the
distribution makes a negligible change in the results
(Theory of Probability, III, §3.1)

[Not!]
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Over-interpretation (3)

Example (Haldane prior)

For a binomial observation, x ∼ B(n, p), and prior
π∗(p) ∝ [p(1− p)]−1, the marginal distribution,

m(x) =

∫ 1

0
[p(1− p)]−1

(
n

x

)
px(1− p)n−xdp

= B(x , n − x),

is only defined for x 6= 0, n .

Missed by Jeffreys:

If a sample is of one type with respect to some property
there is probability 1 that the population is of that type
(Theory of Probability, III, §3.1)
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Uniform difficulties

Lack of reparameterization invariance/coherence

ψ = eθ π1(ψ) =
1

ψ
6= π2(ψ) = 1

There are cases of estimation where a law can be equally
well expressed in terms of several different sets of
parameters, and it is desirable to have a rule that will
lead to the same results whichever set we choose.
Otherwise we shall again be in danger of using different
rules arbitrarily to suit our taste (Theory of Probability,
III, §3.1)
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Parameterisation variability

Example (Jeffreys’ example, ToP, III, §3.1)

If
πV (v) ∝ 1 ,

then W = V n is such that

πW (w) ∝ w (n−1)/n
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Difficulties (2)

Problems of proper-ness

x ∼ N (θ, σ2), π(θ, σ) = 1

π(θ, σ|x) ∝ e−(x−θ)2/2σ2
σ−1

⇒ π(σ|x) ∝ 1 (!!!)
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Difficulties (3)

Inappropriate for testing point null hypotheses:

The fatal objection to the universal application of the
uniform distribution is that it would make any
significance test impossible. If a new parameter is being
considered, the uniform distribution of prior probability
for it would practically always lead to the result that the
most probable value is different from zero (Theory of
Probability, III,§3.1)

but so would any continuous prior!
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A strange conclusion

“The way out is in fact very easy”:

If v is capable of any value from 0 to ∞, and we take its
prior probability distribution as proportional to dv/v,
then % = 1/v is also capable of any value from 0 to ∞,
and if we take its prior probability as proportional to
dρ/ρ we have two perfectly consistent statements of the
same form (Theory of Probability, III, §3.1)

Seems to consider that the objection of 0 probability result only
applies to parameters with (0,∞) support.
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ToP difficulties (§3.1)

Jeffreys tries to justify the prior π(v) ∝ 1/v as “correct” prior, by
usual argument that this corresponds to flat prior on log v ,
although Jeffreys rejects Haldane’s prior which is based on flat
prior on the logistic transform v/(1− v)

...not regard the above as showing that dx/x(1− x) is
right for their problem. Other transformations would
have the same properties and would be mutually
inconsistent if the same rule was taken for all. ...[even
though] there is something to be said for the rule
(Theory of Probability, III, §3.1) Not Jaynes’ view

P(dx |H) =
1

π

dx√
x(1− x)

.
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(continued)

Very shaky from a mathematical point of view:

...the ratio of the probabilities that v is less or greater
than a is ∫ a

0
vndv

/∫ ∞
a

vndv .

(...) If n < −1, the numerator is infinite and the
denominator finite and the rule would say that the
probability that v is greater than any finite value is 0.
(...) But if n = −1 both integrals diverge and the ratio is
indeterminate. (...) Thus we attach no value to the
probability that v is greater or less than a, which is a
statement that we know nothing about v except that it is
between 0 and ∞ (Theory of Probability, III, §3.1)
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From ToP to PT

“Jeffreys suggested that we assign a prior dσ/σ to a
continuous parameter known to be positive on the
grounds that we are saying the same thing whether we
use σ or σm.”(p.377)

[Right!]

“We do not want (and obviously cannot have) invariance
to more general parameter changes.”(p.377)

[Wrong! Witness Jeffreys’ priors!]
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Invariant priors

Principle: Agree with the natural symmetries of the problem

- Identify invariance structures as group action

G : x → g(x) ∼ f (g(x)|ḡ(θ))
Ḡ : θ → ḡ(θ)
G∗ : L(d , θ) = L(g∗(d), ḡ(θ))

- Determine an invariant prior

π(ḡ(A)) = π(A)
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Generic solution

Right Haar measure
But...

Requires invariance to be part of the decision problem

Missing in most discrete setups (Poisson)

Invariance must somehow belong to prior setting/information
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Location-scale example (§12.4.1)

If

p(x |νσ) dx =
1

σ
h

(
x − ν
σ

)
“a change of scale and shift of location does not change that state
of knowledge” (p.379) and the invariant prior under

f (ν, σ) = af (ν + b, aσ)

is
f (ν, σ) ∝ σ−1

[Right-Haar measure and Jeffreys prior]
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Location-scale example (§12.4.1)

If

p(x |νσ) dx =
1

σ
h

(
x − ν
σ

)
“a change of scale and shift of location does not change that state
of knowledge” (p.379) and the invariant prior under

f (ν, σ) = a2f (aν + b, aσ)

is
f (ν, σ) ∝ σ−2

[Left-Haar measure and not Jeffreys prior]
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No group action example (§12.4.2)

Case of the Poisson distribution/process

p(n|λt) =
(λt)n

n!
exp{−λt}

which must be invariant under a time scale change, leading to

f (λ) = qf (qλ) i.e. f (λ) ∝ λ−1
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Another no-group-action example (§12.4.3)

Case of a binomial distribution

p(r |nθ) = θr (1− θ)n−r

where no group action can take place [except for the trivial
p → (1− p)]

Jaynes argues that the prior on θ should not change
when provided with a piece of evidence E , modifying θ into

θ′ =
θp(E |SX )

θp(E |SX ) + (1− θ)p(E |FX )
,

aθ

1− θ + aθ

ending up with Haldane’s prior

f (θ) ∝ 1/θ(1− θ)

Not Jeffreys’ choice
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Laplace’s succession rule (rev’ed)

Hypergeometric setting

p(r |nRN) =

(R
r

)(N−R
n−r
)(N

n

)
and law of natural induction

p(R = N|rnN) =
n + 1

n + 2

under uniform prior p(R|N) = 1/(N + 1)
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Laplace’s succession rule (rev’ed)

Hypergeometric setting

p(r |nRN) =

(R
r

)(N−R
n−r
)(N

n

)
and law of natural induction

p(R = N|rnN) =
n + 1/2

n + 1

under Jeffreys prior p(R|N) ≈ 1/π
√

R(N − R)
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Laplace’s succession rule (rev’ed)

Hypergeometric setting

p(r |nRN) =

(R
r

)(N−R
n−r
)(N

n

)
and law of natural induction

p(R = N|rnN) ≈
√

n√
n + π−1/2

under reference prior

p(R|N) =

{
1/2 if R = N

1/2π
√

R(N − R) if 0 ≤ R ≤ N − 1

[Jeffreys, 1939; Berger, Bernardo, & Sun, 2009]
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Bertrand’s random line

“Bertrand’s problem was stated originally in terms of
drawing a straight line ‘at random’ intersecting a circle
(...) we do no violence to the problem if we suppose we
are tossing straws onto the circle (...) What is the
probability that the chord thus defined [by a random
straw] is longer than the side of the inscribed equilateral
triangle?”(p.386)
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Bertrand’s undefined randomness

Historically Bertrand (1889) used this illustration to show the
relevance of the reference measure (or of the underlying
σ-algebra!): depending on whether the reference measure is
“uniform on (a) linear distances between centers of chord and
circle; (b) angles of intersections of the chord on the
circumference; (c) the center of the chord over the intererior area
of the circle, the probabilities are 1/2, 1/3 and 1/4, respectively.”

Jaynes wonders at “which answer is correct?” as if the problem
had an answer.
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Jaynes’ redefined randomness

Jaynes mentions checking by experiment and assessing by
frequency, but this seems self defeating, since the “randomness” of
the straw draws cannot be defined.

[Just try to write an R code!]

Jaynes introduces invariance under (a) rotation,

f (r , θ) = g(r , θ − α) = f (r)

(b) scale,

f (r) = a2f (ar) =
qrq−2

2πRq

and (c) translation tranforms:

f (r) =
1

2πRr
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The entropy principle

Transformation groups

And the winner is...

R program ran with straw
endpoints generated uniformly
over a large

(−10× R, 10× R)2

box until the straw covers the
unit circle, resulting in an
aggreement with Borel’s and
Jaynes’ “universal distribution
law” (p.393)!
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Transformation groups

A moderate conclusion

“ On the one hand, one cannot deny the force of
arguments which (...) demonstrate the ambiguity of
dangers in the principle of indifference. On the other
hand, it is equally undeniable that use of that principle
has, over and over, led to correct, nontrivial, and useful
predictions (...) Cases to which the principle of
indifference has been applied successfully in the past are
just the ones in which the actual calculations are seen as
an application of indifference between problems, rather
than events.”(p.395)
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Background

St Petersburg’s paradox

“Toss an honest coin till it comes heads for the first time.
If it occurs at the nth throw, the player receives 2n

dollars.”(p.399)

The paradox is that a player should agree to pay an infinite
amount since the expected profit is

∞∑
k=1

2−k2k = +∞
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Background

Moral expectation

Bernoulli and Laplace solved the
“paradox” with another utility
function, log(M): “For an initial
fortune of m francs, the fair fee
f (m) is determined by”

log(m) =
∞∑
n=1

2−n log(m − f + 2n)
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Background

The classical if honest wheatherman

Another example of log utility:

log(n)−
∑
i

pi log qi

for predicted probabilities qi and “true” probabilities pi .

Back to entropy log(n)− H(p1, . . . , pn) at the maximum
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Background

General comments

“In the 1930’s and 1940’s, a form of decision rules was
expounded by J. Neyman and E.S. Pearson. It enjoyed a
period of popularity with electrical engineers and
economists, but is now obsolete.”(p.404)

Description of Wald’s formulation of decision theory via the loss
function L(Di , θi ) connected with Raiffa and Schlaifer (1961) and
Berger (1985)
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Background

Bayesian Decision Theory

Three spaces/factors:

(1) On X , distribution for the observation, f (x |θ);

(2) On Θ, prior distribution for the parameter, π(θ);

(3) On Θ×D, loss function associated with the decisions, L(θ, δ);



Probability Theory revisited

Decision theory

Background

Bayesian Decision Theory

Three spaces/factors:

(1) On X , distribution for the observation, f (x |θ);

(2) On Θ, prior distribution for the parameter, π(θ);

(3) On Θ×D, loss function associated with the decisions, L(θ, δ);



Probability Theory revisited

Decision theory

Background

Bayesian Decision Theory

Three spaces/factors:

(1) On X , distribution for the observation, f (x |θ);

(2) On Θ, prior distribution for the parameter, π(θ);

(3) On Θ×D, loss function associated with the decisions, L(θ, δ);



Probability Theory revisited

Decision theory

Background

Foundations

“This theory is clearly of no use unless by ‘making a
decision’ we mean ‘acting as if the decision were
correct’.”(p.406)

Theorem (Existence)

There exists an axiomatic derivation of the existence of a
loss function.

[DeGroot, 1970]

“(1) there is a continuous gradation (...) and (2) the
consequences of an action will in general depend on what
is the true state of nature.”(p.407)
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Estimators

Decision procedure δ usually called estimator
(while its value δ(x) called estimate of θ)

Fact

Impossible to uniformly minimize (in d) the loss function

L(θ, d)

when θ is unknown
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Loss functions

Frequentist Principle

Average loss (or frequentist risk)

R(θ, δ) = Eθ[L(θ, δ(x))]

=

∫
X
L(θ, δ(x))f (x |θ) dx

Principle

Select the best estimator based on the risk function
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Loss functions

Difficulties with frequentist paradigm

“Risk and admissibility are evidently sampling theory
criteria, not Bayesian, since they invoke only sampling
distributions.” (p.408)

(1) Error averaged over the different values of x proportionally to
the density f (x |θ): not so appealing for a client, who wants
optimal results for her data x , “what is best for the present
specific sample” (p.411)!

(2) Assumption of repeatability of experiments (“belief that
R(θ, δ) is the limit of the average of actual losses” (p.411)
not always grounded.

(3) R(θ, δ) is a function of θ: there is no total ordering on the set
of procedures (§13.8-§13.9).
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Decision theory

Loss functions

Bayesian principle

Principle Integrate over the space Θ to get the posterior expected
loss

ρ(π, d |x) = Eπ[L(θ, d)|x ]

=

∫
Θ
L(θ, d)π(θ|x) dθ,
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Loss functions

Bayesian principle (2)

Alternative

Integrate over the space Θ and compute integrated risk

r(π, δ) = Eπ[R(θ, δ)]

=

∫
Θ

∫
X
L(θ, δ(x)) f (x |θ) dx π(θ) dθ

which induces a total ordering on estimators.

Existence of an optimal decision
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Loss functions

Bayes estimator

Theorem (Construction of Bayes estimators)

An estimator minimizing
r(π, δ)

can be obtained by selecting, for every x ∈ X , the value δ(x)
which minimizes

ρ(π, δ|x)

since

r(π, δ) =

∫
X
ρ(π, δ(x)|x)m(x) dx .

c© Both approaches give the same estimator
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Loss functions

Bayes estimator (2)

Definition (Bayes optimal procedure)

A Bayes estimator associated with a prior distribution π and a loss
function L is

arg min
δ

r(π, δ)

The value r(π) = r(π, δπ) is called the Bayes risk
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The quadratic loss

Historically, first loss function (Legendre, Gauss)

L(θ, d) = (θ − d)2

or
L(θ, d) = ||θ − d ||2
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Loss functions

Proper loss

Posterior mean

The Bayes estimator δπ associated with the prior π and with the
quadratic loss is the posterior expectation

δπ(x) = Eπ[θ|x ] =

∫
Θ θf (x |θ)π(θ) dθ∫
Θ f (x |θ)π(θ) dθ

.
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Loss functions

The absolute error loss

Alternatives to the quadratic loss:

L(θ, d) =| θ − d |,

or

Lk1,k2(θ, d) =

{
k2(θ − d) if θ > d ,

k1(d − θ) otherwise.
(5)

L1 estimator

The Bayes estimator associated with π and (5) is a (k2/(k1 + k2))
fractile of π(θ|x).
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An urban myth

Jaynes (p.4141) maintains that the MAP estimator

arg max
θ
`(θ|x)π(θ)

is associated with the 0− 1 loss

L(θ, d) =

{
0 if θ = d

1 if θ 6= d

Wrong for continuous spaces as the MAP depends on the
dominating measure

[Druihlet & Marin, 2007]
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Minimaxity and admissibility

Minimaxity

Frequentist insurance against the worst case and (weak) total
ordering on D∗

Definition (Frequentist optimality)

The minimax risk associated with a loss L is

R̄ = inf
δ∈D∗

sup
θ

R(θ, δ) = inf
δ∈D∗

sup
θ

Eθ[L(θ, δ(x))],

and a minimax estimator is any estimator δ0 such that

sup
θ

R(θ, δ0) = R̄.
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Minimaxity and admissibility

Criticisms

“Nature is not an intelligent adversary” (p.407)

Analysis in terms of the worst case, “the long-faced pessimist”
(p.407)

Does not incorporate prior information

Too conservative

Difficult to exhibit/construct
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Minimaxity and admissibility

Minimaxity (2)

Existence

If D ⊂ Rk convex and compact, and if L(θ, d) continuous and
convex as a function of d for every θ ∈ Θ, there exists a
nonrandomized minimax estimator.
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Minimaxity and admissibility

Connection with Bayesian approach

The Bayes risks are always smaller than the minimax risk:

r = sup
π

r(π) = sup
π

inf
δ∈D

r(π, δ) ≤ r = inf
δ∈D∗

sup
θ

R(θ, δ).

Definition

The estimation problem has a value when r = r , i.e.

sup
π

inf
δ∈D

r(π, δ) = inf
δ∈D∗

sup
θ

R(θ, δ).

r is the maximin risk and the corresponding π the favourable prior
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Admissibility

Reduction of the set of acceptable estimators based on “local”
properties

Definition (Admissible estimator)

An estimator δ0 is inadmissible if there exists an estimator δ1 such
that, for every θ,

R(θ, δ0) ≥ R(θ, δ1)

and, for at least one θ0

R(θ0, δ0) > R(θ0, δ1)

Otherwise, δ0 is admissible



Probability Theory revisited

Decision theory

Minimaxity and admissibility

Admissibility

Reduction of the set of acceptable estimators based on “local”
properties

Definition (Admissible estimator)

An estimator δ0 is inadmissible if there exists an estimator δ1 such
that, for every θ,

R(θ, δ0) ≥ R(θ, δ1)

and, for at least one θ0

R(θ0, δ0) > R(θ0, δ1)

Otherwise, δ0 is admissible



Probability Theory revisited

Decision theory

Minimaxity and admissibility

Minimaxity & admissibility

If there exists a unique minimax estimator, this estimator is
admissible.

The converse is false!

If δ0 is admissible with constant risk, δ0 is the unique minimax
estimator.

The converse is false!
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Minimaxity and admissibility

The Bayesian perspective

Admissibility strongly related to the Bayes paradigm: Bayes
estimators often constitute the class of admissible estimators

If π is strictly positive on Θ, with

r(π) =

∫
Θ

R(θ, δπ)π(θ) dθ <∞

and R(θ, δ), is continuous, then the Bayes estimator δπ is
admissible.

If the Bayes estimator associated with a prior π is unique, it is
admissible.

Regular (6=generalized) Bayes estimators always admissible
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Minimaxity and admissibility

Jaynes’ objections

About complete classes:

“From Wald’s viewpoint it is an highly nontrivial
mathematical problem to prove that such a class exists,
and to find an algorithm by which any rule in the class
can be constructed. From our viewpoint, however, these
are unnecessary complications, signifying only an
inappropriate definition of the term admissible: an
inadmissible decision may be overwhelmingly preferable
to an admissible one, because the criterion of
admissibility ignores prior information.”(p.408)
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Minimaxity and admissibility

Jaynes’ objections

About admissibility

“An estimation rule that simply ignores the data and
always estimate θ∗ = 5 is admissible if the point θ = 5 is
in the parameter space (...) This illustrates the folly of
inventing noble-sounding names like ‘admissibility’ and
‘unbiased’ for principles that are far from noble; and not
even fully rational.” (p.409)
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Minimaxity and admissibility

Jaynes’ objections

Yet again about complete classes but the other way:

“Wald’s complete class theorem [is that] if the θj are
discrete then the class of admissible strategies is just the
class of Bayes strategies. If the possible θj form a
continuum, the admissible rules are the proper Bayesian
ones; i.e. Bayes rules from proper priors. But few people
have ever tried to follow his proof.” (p.415)

[Wrong outside compact cases!]
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Jaynes’ objections

Against improper priors:

“There is a great deal of mathematical nitpicking, also
noted by Berger, over the exact situation when one tries
to jump into an improper prior in infinite parameter
spaces without considering any limit from a proper prior
(..) the resulting singular mathematics is only an artifact
that corresponds to no singularity in the real problem,
where prior information always excludes the region at
infinity.”(p.415)

[Question # 7 How much of the region?!]
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Minimaxity and admissibility

Auto-biography

“If a sampling theorist will think his estimation problems
through to the end, he will find himself obliged to use the
Bayesian mathematical algorithm, even if his ideology still
leads him to reject the Bayesian rationale for it.”(p.415)
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Minimaxity and admissibility

Duality

“If one worries about arbitrariness in the prior
probabilities then one ought to worry just as much about
arbitrariness in the loss functions.”(p.419)

Jaynes remarks on the duality between loss and prior since only the
product

L(θ, d)π(θ)

matters
[Rubin, 1983]
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Non-statistical quotes about loss

“One person may persuade thousands of others to believe
his private myths, as the sordid history of religious,
political and military disasters shows.”
“All of us have felt the urge to commit robbery, assault,
and murder.”
“The greatest intellectual gifts sometimes carry with
them the inability to perceive simple realities that would
be obvious to a moron” (p.422)
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Minimaxity and admissibility

Decision theory is not fundamental

“The theory of inference involving priors is more
fundamental than that of loss functions (...) Loss
functions are less firmly grounded than are prior
probabilities (...) In recognising the indefinite and
provisional nature of loss functions, we have a more
cogent reason for not basing probability theory on
decisions.”(p.422-425)
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Model choice and model comparison

“A false premise built into a model that is never
questioned cannot be removed by any amount of new
data.”(p.601)

Choice of models

Several models available for the same observation

Mi : x ∼ fi (x |θi ), i ∈ I

where I can be finite or infinite
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Model comparison

Bayesian resolution

B Framework

Probabilises the entire model/parameter space

This means:

allocating probabilities pi to all models Mi

defining priors πi (θi ) for each parameter space Θi
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Formal solutions

Resolution

1. Compute

p(Mi |x) =

pi

∫
Θi

fi (x |θi )πi (θi )dθi∑
j

pj

∫
Θj

fj(x |θj)πj(θj)dθj

2. Take largest p(Mi |x) to determine “best” model,
or use averaged predictive∑

j

p(Mj |x)

∫
Θj

fj(x ′|θj)πj(θj |x)dθj
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Ockham factor

Posterior odds ratio comparing model Mi with model Mj

p(Mi |x)

p(Mj |x)
=

p(Mi )

p(Mj)
× p(x |Mi )

p(x |Mj)

Differs from Bayes factor

Bij(x) =
p(x |Mi )

p(x |Mj)
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Who’s Occam?

Pluralitas non est ponenda sine neccesitate

William d’Occam (ca. 1290–ca. 1349)

William d’Occam or d’Ockham was
a English theologian (and a
Franciscan monk) from Oxford who
worked on the bases of empirical
induction, nominalism and logic and,
in particular, posed the above
principle later called Occam’s razor.
Also tried for heresy in Avignon and
excommunicated by John XXII.
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Ockham factor (2)

“Some 650 years ago the Franciscan monk William of
Ockham perceived the logical error in the mind projection
fallacy: Entities are not to be multiplied without
necessity.” (p.601)

Jaynes defines the Ockham factor for model Mi as

Wi = p(x |Mi )/max
θ

Li (θ|x)

=

∫
Li (θi |x)

maxθ Li (θ|x)
p(θi |Mi ) dθi
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An explanation of Ockham’s razor

Special case when M2 corresponds to an (n + 1)-dimensional
parameter θ and when M1 corresponds to the special case
θn+1 = 0
If likelihood concentrated on subsets Θ′1 ⊂ Θ1 and Θ′2 ⊂ Θ2 the
subset Θ′2 is getting less prior probability than Θ′1 because
p(θ|M2) spread over a larger space.
Therefore

p(x |M2) < p(x |M1)

in the case of the smaller model agreeing with the data.
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Regression example

Opposition of

M1 : yi = αxi + ei ei ∼ N (0, σ2)

and
M2 : yi = αxi + βx2

i + ei ei ∼ N (0, σ2)

Under α ∼ N (α0, σ
2
0) prior

W1 =
1√

1 + σ2
0nx̄2/σ2

exp

{
− (α̂− α0)2

1 + σ2
0nx̄2/σ2

}

[Anticlimactic!]
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Regression example

Opposition of

M1 : yi = αxi + ei ei ∼ N (0, σ2)

and
M2 : yi = αxi + βx2

i + ei ei ∼ N (0, σ2)

and under β ∼ N (β0, σ
2
1) additional prior

W2 =
σ−1

0 σ−1
1 exp{x}√

(σ−2
0 + nσ−2x̄2)(σ−2

1 + nσ−2x̄4)

where x remains undefined in Jaynes (p.613)
[Anticlimactic!]
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[Last] comments

“Actual scientific practice does not really obey Ockham’s
razor, either in its previous ‘simplicity’ form or in our
revised ‘plausibility’ form (...) In any field, the
Establishement is seldom in pursuit of the truth, because
they sincerely believe it is composed of those who
sincerely believe that they are already in possession of
it.”(p.613)

The End
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