
MCMC Theory: What is it Good For?

Jeffrey S. Rosenthal
University of Toronto

jeff@math.toronto.edu
http://probability.ca/jeff/

(MCMSki III, Utah, Jan. 5, 2011)

Introduction

MCMC’s greatest successes have been in . . . applications!

So, what is MCMC theory good for?

Whitfield and Strong (Motown, 1969):

War
What is it good for?
Absolutely nothin’ !

Rosenthal (MCMSki, 2011):

MCMC theory
What is it good for?
Perhaps a little somethin’ !

(1/33)

Everyone uses SOME theory!

e.g. Metropolis-Hastings algorithm:

Given Xn−1, propose Yn ∼ q(Xn−1, ·), accept with prob.

min

(
1 ,

π(Yn) q(Yn, Xn−1)

π(Xn−1) q(Xn−1, Yn)

)
.

Why? To guarantee reversibility, i.e.

π(dx)P (x, dy) = π(dy)P (y, dx) ,

This in turn guarantees that π(·) is a stationary distribution,
i.e.

∫
π(dx)P (x,A) = π(A).

(2/33)

Then, assuming irreducibility and aperiodicity, this guaran-
tees ergodicity, i.e.

lim
n→∞

P(Xn ∈ A) = π(A) .

And also laws of large numbers (LLN), e.g.

lim
M→∞

1

M

M∑
n=1

h(Xn) = π(h) :=

∫
h(y)π(dy) .

So, everybody uses this much theory!

(Tierney 1994, etc.)

But what about other theory?

(3/33)

Very Simple Running Example (Java Applet)

π(·) simple distribution on X = {1, 2, 3, 4, 5, 6}:
π(1) = π(3) = π(5) = 0.15, π(2) = 0.09, π(4) = π(6) = 0.23

Do “random-walk Metropolis” (RWM):

For some fixed γ ∈ N,

• Given Xn, first propose a state Yn+1 ∈ Z, with
Yn+1 ∼ Uniform{Xn − γ, . . . ,Xn − 1, Xn + 1, . . . , Xn + γ}.
• Then, with probability min[1, π(Yn+1)

/
π(Xn)], accept

proposal and set Xn+1 = Yn+1.

• Otherwise, with probability 1−min[1, π(Yn+1)
/
π(Xn)],

reject proposal and set Xn+1 = Xn. [APPLET]

(4/33)

Tuning/Optimizing the Algorithm

This works, i.e. L(Xn)→ π(·). (By reversibility!)

But should γ be 2, or 1, or 50, or . . . ?

• If γ too small (say, γ = 1), then usually accept, but
move very slowly – bad.

• If γ too large (say, γ = 50), then usually π(Yn+1) = 0,
i.e. hardly ever accept – bad.

• Best γ is between the two extremes, i.e. acceptance rate
should be far from 0 and far from 1.

(“Goldilocks Principle”)

Obvious in this example.

Other examples??

(5/33)

Example #2: N(0,1)

Target π(·) = N(0, 1). Proposal Q(x, ·) = N(x, σ2).

How to choose σ?

σ = 0.1? σ = 25? σ = 2.38?
too small! too big! (better!)

A.R. = 0.962 A.R. = 0.052 A.R. = 0.441

What about higher dimensions? (Need smaller σ?)
(6/33)

How to make theoretical progress?

Consider diffusion limits!

Analogy: if {Xn} is simple random walk, and Zt = d−1/2Xdt

(i.e., we speed up time, and shrink space), then as d → ∞,
the process {Zt} converges to Brownian motion.

Theorem [Roberts, Gelman, Gilks, AAP 1997]:

If {Xn} is a Metropolis algorithm in high dimension d, with

Q(x, ·) = N(x, `
2

d Id), and Zt = d−1/2X
(1)
dt , then under “cer-

tain conditions” on π(·), the process {Zt} converges to a
diffusion, whose speed h(`) is explicitly related to its asymp-
totic acceptance rate A(`).

(7/33)

Lots of information here!

• The speed h(`) is related to the acceptance rate A(`).

• To optimize the algorithm, we should maximize h(`).

• The maximization is easy: `opt
.
= 2.38/Cπ.

• Then we can compute that: A(`opt)
.
= 0.234.

So, for Q(x, ·) = N(x, σ2Id), it is optimal to choose

σ2 =
`2opt
d

=
(2.38)2

(Cπ)2d
,

which leads to an acceptance rate of 0.234.

Clear, simple rule. Good! Useful!

Generalizations to Langevin diffusions, other targets, etc.
(Roberts & R., JRSSB 1998; Bédard & R., CJS 2008)

(8/33)

How Quickly Does Java Applet Example Converge?

Use the “minorization condition” approach . . .

Take the case γ = 3 (say).

Then for all x ∈ X with x 6= 3,

P (x, 3) = Q(x, 3) min(1, π(3)/π(x)) ≥ (1/6)(0.15/0.23) > 0.1 .

Also P (3, 3) ≥ Q(3, 0) = 1/6 > 0.1.

Similarly P (x, 4) > 0.1 for all x ∈ X .

Conclusion: P (x, y) ≥ ε ν(y) for all x, y ∈ X , where ε = 0.2,
and ν(3) = ν(4) = 1/2 and ν(x) = 0 otherwise.

“Minorization Condition”

(9/33)

How does this “Minorization Condition” help?

Theorem: if P (x, y) ≥ ε ν(y) for all x, y ∈ X , then

sup
A
|Pn(x,A)− π(A)| ≤ (1− ε)n .

In the above example,

sup
A
|Pn(x,A)− π(A)| ≤ (1− ε)n = (1− 0.2)n = (0.8)n ,

so e.g. |Pn(x,A)− π(A)| < 0.01 whenever n ≥ 21.

“The chain converges in 21 iterations.”

What about a harder example??

(10/33)

Example: Baseball Data Model

Model for baseball hitting percentages (J. Liu):

µ
↙ ↓ ↘

θ1 θK θi ∼ N(µ,A)
↓ ↓
Y1 YK Yi ∼ N(θi, c)

where {Yi} are observed hitting percentages, c is empirically
estimated, and µ,A, θ1, . . . , θK are to be estimated.

Priors: µ ∼ flat, A ∼ IG(a, b). K = 18, dim = 20.

Run a Gibbs sampler on this model.

Time to convergence??

(11/33)

Can compute (R., Stat & Comput. 1996):

• a minorization with ε = 0.0656, at least for x ∈ C ⊆ X ;

• a corresponding “drift condition” back to C;

where C =
{∑

i

(θi − Y)2 ≤ 1
}

.

Putting these two conditions together, can prove that

sup
A
|Pn(x,A)− π(A)| ≤ (0.967)n + (1.17)(0.935)n ,

so e.g. |Pn(x,A)− π(A)| < 0.01 if n ≥ 140.

“The chain converges in 140 iterations.”

Realistic models/bounds! (Jones & Hobert, Stat Sci 2001)

But too tricky for everyday use . . . what else?

(12/33)

Geometric Ergodicity (qualitative convergence)

DEFN: Say the chain is geometrically ergodic if

‖Pn(x, ·)− π(·)‖ ≤ C(x) ρn , n = 1, 2, 3, . . .

for some ρ < 1, where C(x) <∞ for π-a.e. x ∈ X .

i.e., distance to stationarity decreases exponentially quickly
(at some exponential rate).

Intuitively, if the chain is geometrically ergodic, then it “prob-
ably converges quickly” in some sense.

Always holds on finite state spaces (e.g. Java example).

But on unbounded state spaces, may or may not hold.

Does this qualitative property actually matter??
(13/33)

Example #2 again: RWM for N(0,1)

RWM for π(·) = N(0, 1), with Q(x, ·) = N(x, σ2), where σ
is chosen to make A.R.

.
= 0.234.

Works well:

P(|X| > 2)
.
= 0.0455; estimate = 0.0453. Good!

(14/33)

Example #2b: RWM for Cauchy

RWM for π(x) = c
1+x2 (Cauchy), with Q(x, ·) = N(x, σ2),

with σ again chosen to make A.R.
.
= 0.234.

Much worse!

P(|X| > 10)
.
= 0.0635; estimate = 0.0469. Way too small!

(15/33)

Another try:

P(|X| > 10)
.
= 0.0635; estimate = 0.0746. Way too big!

Theorem: RWM is geometrically ergodic if and only if π(·)
has exponentially-small tails. [N(0,1): yes; Cauchy: no.]

(Mengersen-Tweedie-Roberts, 1996)

It matters!

(16/33)

Example #3: Independence sampler

Independence sampler for π(x) = e−x, with proposal q(y) =
ke−ky for various possible choices of k:

• k = 1 (i.i.d. sampling)

E(X) = 1; estimate = 0.9932. Excellent!
(17/33)

Independence sampler (cont’d)

What about other values of k?

• k = 0.01

E(X) = 1; estimate = 1.0186. Quite good.

(18/33)

Independence sampler (cont’d)

And what if k > 1?

• k = 5

E(X) = 1; estimate = 2.4470. Terrible: way too big!

What happened? Maybe we just got unlucky?
(19/33)

Another try with k = 5:

E(X) = 1; estimate = 0.7845. Terrible: way too small!

In fact, we can prove (Roberts and R., MCAP, to appear)
that with k = 5, the chain takes between 4,000,000 and
14,000,000 iterations to converge to within 0.01 of π(·)!

(20/33)

So what’s going on here?

Why is k = 0.01 pretty good, and k = 5 so terrible?

Theorem: Independence samplers are geometrically ergodic
if and only if there is δ > 0 for which q(x) ≥ δ π(x) for all
x ∈ X , in which case |Pn(x,A)− π(A)| ≤ (1− δ)n.

(k ≤ 1: yes; k > 1: no)

Again, it matters!

(Also important for ensuring CLTs of estimates: Jones 2004.)

Okay, so: geometric ergodicity is important, quantitative
bounds are useful but difficult, and 0.234 is often an optimal
acceptance rate.

What about further optimality, beyond “0.234”?
(21/33)

Example #4: π(·) = N(0,Σ) in dimension 20

First try: Q(x, ·) = N(x, I20) (acc rate = 0.006)

Horrible: Σ11 = 24.54, E(X2
1) = 1.50.

(22/33)

Second try: Q(x, ·) = N
(
x, (0.0001)2I20

)
(acc=0.9996)

Also horrible: Σ11 = 24.54, E(X2
1) = 0.0053.

(23/33)

Third try: Q(x, ·) = N
(
x, (0.02)2I20

)
(acc=0.234)

Still poor: Σ11 = 24.54, E(X2
1) = 3.63.

(24/33)

Fourth try: Q(x, ·) = N
(
x, [(2.38)2/20] Σ

)
(acc=0.263)

Much better: Σ11 = 24.54, E(X2
1) = 25.82.

(25/33)

Optimizing the Proposal Covariance (Shape)

Theorem [Roberts and R., Stat Sci 2001]:

Under “certain conditions” on π(·), the optimal Metropolis
algorithm Gaussian proposal distribution as d→∞ is

Q(x, ·) = N
(
x, ((2.38)2/d) Σ

)
[not N(x, σ2Id)], where Σ is target covariance. And, the
corresponding asymptotic acceptance rate is again 0.234.

Very useful, at least if Σ is known!

But what if it isn’t??

(26/33)

Adaptive MCMC

What if Σ is unknown?

Can we still “approximately” optimize the RWM algorithm?

Could use “trial and error” (time-consuming, unreliable).

Or, could have computer adapt the algorithm . . .

That is, we design a rule for the computer to update its
MCMC algorithm during the run, based on the history.

This destroys the Markov property, stationarity, etc.

But still valid (ergodic) under various conditions.

[Roberts and R., JAP 2007, JCGS 2009; Haario, Saksman,
Tamminen, Vihola, Andrieu, Moulines, Robert, Fort, Atchadé,
Craiu, Kohn, Giordani, Nott, . . . ; Adap’ski.]

Is it useful??
(27/33)

Example: High-Dimensional Adaptive Metropolis

π(·) is d-dimensional target distribution.

e.g. d = 200, so target covariance Σ is 200×200, with 20,100
distinct entries. (Can’t possibly tune it by hand!)

Know that optimal Gaussian RWM proposal is:

N
(
x, [(2.38)2/d] Σ

)
.

But usually Σ unknown. Instead use empirical estimate, Σn.

Specifically, let 0 < β < 1, and use proposal distribution:

Qn(x, ·) = (1−β)N
(
x, [(2.38)2/d] Σn

)
+ β N

(
x, [(0.1)2/d] Id

)
.

(Slight variant of algorithm of Haario et al., 2001.)

So, how well does it work?
(28/33)

Adaptive Metropolis in dimension 200

In dimension 200, takes over 1,000,000 iterations, then finds
good proposal covariance and starts mixing well.

Good!

(29/33)

Adaptive Metropolis-within-Gibbs Example

Update ith coordinate using proposal distributionN(xi, e
2 lsi),

while leaving the other d− 1 coordinates fixed.

How to choose good values for the proposal scalings lsi??

Adaptive algorithm:

• Start with lsi ≡ 0 (say).

• Adapt each lsi, in batches, to seek 0.44 acceptance rate.

(Approximately optimal for one-dim proposals.)

Test on Variance Components Model, withK = 500 (dim=503),
Ji chosen with 5 ≤ Ji ≤ 500, data Yij ∼ N(i− 1, 102).

How well does it work?

(30/33)

Metropolis-within-Gibbs (cont’d)

Adaption finds “good” values for the lsi (R&R, JCGS 2009).

Algorithm applied to statistical genetics models by Turro,
Bochkina, Hein, and Richardson (BMC Bioinformatics, 2007).

(31/33)

Adapting Random-Scan Gibbs Sampler Weights

If some coordinates less “significant” than others, may want
to update them less often.

Hence, adapt the random-scan coordinate weights, {αn,i}.

If done carefully, then can prove its ergodic, and it can signif-
icantly speed up convergence time in e.g. statistical genetics
models (Richardson, Bottolo, R., Valencia 9).

Many other adaptions possible too (e.g. R & R, JCGS 2009).

General-purpose software: probability.ca/amcmc

Lots of recent activity (Adap’ski, . . .); requires theory!
(32/33)

Summary

• MCMC theory is good for a little somethin’ !

• Need some theory to define the basic algorithms.

• Theory can help optimize scaling, acceptance rate (e.g.
0.234, etc.), tuning parameters, . . .

• Theory can help improve proposal shape (e.g. ∝ Σ).

• Can compute time to convergence with minorization
conditions etc., to ensure correct sampling distributions.

• Geometric ergodicity is an important property that greatly
affects performance (convergence, accuracy, CLTs, etc.).

• Theory allows for adaption (if done carefully), to get the
computer to help us find good MCMC algorithms.

• The next time you see an MCMC theorist . . . smile.

All my papers, applets, software: probability.ca/jeff
(33/33)

