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the Theory and the Results
Technical Conditions vs the goal of Adaptive MCMC

Design of algorithms

the Results

I I would like to congratulate the authors for this very impressive and subtle
paper!

I it develops theory for establishing ergodicity and SLLN in very general
scenarios

I the theory is extremely powerful and allows to address the two most important
and challenging Adaptive/Interacting algorithms in the field.
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the Theory and the Results
Technical Conditions vs the goal of Adaptive MCMC

Design of algorithms

the Results

II In case of the original Adaptive Metropolis algorithm of Haario et al.,
I the theory implies convergence of marginal distributions to π.
I These conclusions have been verified for X = Rd

in the geometrically ergodic setting,
for super-exponentially decaying targets,
reproving the recent result of Saksmann and Vihola (2010).

II The analysis of the Interacting Tempering Algorithm of Kou at al is even more
impressive,

I Interacting Tempering has been analyzed for the first time in this generality,
I In particular, in the geometrically ergodic setting
I the SLLN for unbounded functionals has been established.
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Technical Conditions for ergodicity

I The Theory is very delicate and is building on the following crucial conditions.
I A1: For any θ ∈ Θ, there exists πθ, s.t. πθ = Pθπθ.
I A2(a): For any ε > 0, there exists a non-decreasing sequence rε(n), s.t.

lim supn→∞ rε(n)/n = 0 and

lim sup
n→∞

E
[
‖Prε(n)

θn−rε(n)
(Xn−rε(n), ·)− πθn−rε(n)‖TV

]
≤ ε.

I A2(b): For any ε > 0,

lim
n→∞

rε(n)−1∑
j=0

E
[
D(θn−rε(n)+j, θn−rε(n))

]
= 0.

I the dependence on θ in πθ above, is crucial for Interacting Tempering,
however I will drop it for clarity in subsequent slides.
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Comparison to containment - I

I A2(a): For any ε > 0, ∃ rε(n), s.t. lim supn→∞ rε(n)/n = 0 and

lim sup
n→∞

E
[
‖Prε(n)

θn−rε(n)
(Xn−rε(n), ·)− π‖TV

]
≤ ε.

I A2(b): For any ε > 0, limn→∞
∑rε(n)−1

j=0 E
[
D(θn−rε(n)+j, θn−rε(n))

]
= 0.

I Containment C(a): define Mε(x, θ) := infn{‖Pn
θ(x, ·)− π‖TV ≤ ε}, and assume

∀δ > 0, ε > 0, ∃ Mε,δ s.t. ∀n P(Mε(Xn, θn) ≤ Mε,δ) ≥ 1− δ.

I Diminishing Adaptation C(b): limn→∞ E [D(θn−1, θn)] = 0.
I C(a), C(b)⇒ A2(a), A2(b) by taking e.g. rε(n) = Mε/2,ε/2.

I if rε(n) = const(ε) = rε, then
A2(a), A2(b)⇒ C(a), C(b) by taking e.g. Mε,δ := rεδ.
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Comparison to containment - I

I C(a), C(b)⇒ A2(a), A2(b) by taking e.g. rε(n) = Mε/2,ε/2.

I if rε(n) = const(ε) = rε, then
A2(a), A2(b)⇒ C(a), C(b) by taking e.g. Mε,δ := rεδ.

I Therefore A2(a), A2(b) generalize C(a), C(b) (rather then weaken) and the
generalization is in settings where rε(n) needs to grow to∞ as n→∞.

I We shall try to investigate, what happens if rε(n) needs to grow to∞ as
n→∞.
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What Adaptive MCMC is designed for?

I In a typical Adaptive MCMC setting the parameter space Θ is large
I there is an optimal θ∗ ∈ Θ s.t. Pθ∗ converges quickly.
I there are arbitrary bad values in Θ, say if θ ∈ Θ̄−Θ then Pθ is not

ergodic.
I if θ ∈ Θ∗ := a region close to θ∗, then Pθ shall inherit good convergence

properties of Pθ∗ .
I When using adaptive MCMC we hope θn will eventually find the region

Θ∗ and stay there essentially forever. And that the adaptive algorithm A will
inherit the good convergence properties of Θ∗ in the limit.

II We are looking for a Theorem:
You can actually run your Adaptive MCMC algorithm A, and it will do what it is
supposed to do! (under verifiable conditions)
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II We are looking for a Theorem:
You can actually run your Adaptive MCMC algorithm A, and it will do what it is
supposed to do! (under verifiable conditions)
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Design of algorithms

a new class: AdapFail Algorithms

I an adaptive algorithm A ∈ AdapFail, if with positive probability, it is
asymptotically less efficient then ANY MCMC algorithm with fixed θ.

I more formally, AdapFail can be defined e.g. as follows: A ∈ AdapFail, if

∀ε∗>0, ∃0<ε<ε∗ , ∃δ>0, s.t. inf
θ∈Θ

lim
n→∞

P
(

Mε(Xn, θn) > Mε(X̃n, θ)
)
> δ.

I QuasiLemma: Assume the geometrically ergodic setting and assume Θ is big
enough to contain arbitrary slowly converging kernels.
If containment doesn’t hold for A then A ∈ AdapFail.

I If A2(a), A2(b) hold but C(a), C(b) do not hold, then A ∈ AdapFail, but it
deteriorates slowly enough (due to more restrictive A2(b)), so that marginal
distributions (still) converge, and SLLN (still) holds.
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Design of algorithms

some QuasiConjectures

I If containment does not hold for A then the CLT does not hold for A.
(Can one prove that σas > K for arbitrary large K?)

I the Adaptive Metropolis /∈ AdapFail,
(looking forward to talks by Matti and Yves that may be related)

I the Interactive Tempering /∈ AdapFail,
(the uniformly ergodic case in Bercu, Del Moral, Doucet 2010)

I i.e. Containment holds for both.
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Design of Algorithms

I We have substantial insight into ergodicity of adaptive MCMC
I is it possible to use this to design algorithms that are robust and easier to

analyze?
I Ex. for the Adaptive Metropolis, consider the following slight modification

[Roberts, Rosenthal (2009)] with proposal distribution

Qn(x, ·) = (1− β)N (x, (2.38)2Σn/d) + βN (x, (0.1/d)Id).

I the above modification appears more tractable and C(a), C(b) are known to
hold for both, exponentially and super-exponentially decaying tails (Bai et al
2009).

I is it possible to modify other challenging adaptive algorithms to make them
easier to analyze without destroying their empirical properties?

Krzysztof Latuszynski Discussion of Eric Moulines



the Theory and the Results
Technical Conditions vs the goal of Adaptive MCMC

Design of algorithms

Design of Algorithms

I We have substantial insight into ergodicity of adaptive MCMC
I is it possible to use this to design algorithms that are robust and easier to

analyze?
I Ex. for the Adaptive Metropolis, consider the following slight modification

[Roberts, Rosenthal (2009)] with proposal distribution

Qn(x, ·) = (1− β)N (x, (2.38)2Σn/d) + βN (x, (0.1/d)Id).

I the above modification appears more tractable and C(a), C(b) are known to
hold for both, exponentially and super-exponentially decaying tails (Bai et al
2009).

I is it possible to modify other challenging adaptive algorithms to make them
easier to analyze without destroying their empirical properties?

Krzysztof Latuszynski Discussion of Eric Moulines



the Theory and the Results
Technical Conditions vs the goal of Adaptive MCMC

Design of algorithms

Design of Algorithms

I We have substantial insight into ergodicity of adaptive MCMC
I is it possible to use this to design algorithms that are robust and easier to

analyze?
I Ex. for the Adaptive Metropolis, consider the following slight modification

[Roberts, Rosenthal (2009)] with proposal distribution

Qn(x, ·) = (1− β)N (x, (2.38)2Σn/d) + βN (x, (0.1/d)Id).

I the above modification appears more tractable and C(a), C(b) are known to
hold for both, exponentially and super-exponentially decaying tails (Bai et al
2009).

I is it possible to modify other challenging adaptive algorithms to make them
easier to analyze without destroying their empirical properties?

Krzysztof Latuszynski Discussion of Eric Moulines



the Theory and the Results
Technical Conditions vs the goal of Adaptive MCMC

Design of algorithms

Design of Algorithms

I We have substantial insight into ergodicity of adaptive MCMC
I is it possible to use this to design algorithms that are robust and easier to

analyze?
I Ex. for the Adaptive Metropolis, consider the following slight modification

[Roberts, Rosenthal (2009)] with proposal distribution

Qn(x, ·) = (1− β)N (x, (2.38)2Σn/d) + βN (x, (0.1/d)Id).

I the above modification appears more tractable and C(a), C(b) are known to
hold for both, exponentially and super-exponentially decaying tails (Bai et al
2009).

I is it possible to modify other challenging adaptive algorithms to make them
easier to analyze without destroying their empirical properties?

Krzysztof Latuszynski Discussion of Eric Moulines



the Theory and the Results
Technical Conditions vs the goal of Adaptive MCMC

Design of algorithms

Design of Algorithms

I We have substantial insight into ergodicity of adaptive MCMC
I is it possible to use this to design algorithms that are robust and easier to

analyze?
I Ex. for the Adaptive Metropolis, consider the following slight modification

[Roberts, Rosenthal (2009)] with proposal distribution

Qn(x, ·) = (1− β)N (x, (2.38)2Σn/d) + βN (x, (0.1/d)Id).

I the above modification appears more tractable and C(a), C(b) are known to
hold for both, exponentially and super-exponentially decaying tails (Bai et al
2009).

I is it possible to modify other challenging adaptive algorithms to make them
easier to analyze without destroying their empirical properties?

Krzysztof Latuszynski Discussion of Eric Moulines


	the Theory and the Results
	Technical Conditions vs the goal of Adaptive MCMC
	Design of algorithms

