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Outline of the talk

� Variance estimation is an important aspect of Monte Carlo
simulation.

σ2(h) = lim
n→∞

Var

�
n
−1/2

n�

k=1

h(Xk)

�

= Varπ (h(X0)) +
�

j≥1

Covπ (h(X0), h(Xj)) ,

for Markov chains.

� We focus on the so-called lag-window estimator or kernel estimators:

Γ2
n(h) =

n�

k=−n

w(kbn)γn(k),

� For various class of processes, including Markov chains, It is known
that when nbn →∞, under regularity conditions, Γ2

n(h)→ σ2(h).
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Outline of the talk

� For AMCMC, the behavior of Γ2
n(h) is similar. But we have to be

careful when the limiting distribution in the CLT is a mixture of
Gaussians.

� The analysis of Γ2
n(h) is related to the asymptotics of quadratic

forms of Markov chains
�

1≤�≤j≤n

wn(�, j)hn(X�,Xj),

which has many applications in nonparametric time-series.

� We will also introduce a ”small bandwidth” version of Γ2
n(h) where

bn = 1/n. Γ2
n(h) is then inconsistent, but as we will see, valid and

much improved confidence intervals can still constructed.
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Asymptotic variance estimation for MCMC

� Let {Xn, n ≥ 0} be a Markov chain with invariant distribution π
and transition kernel P.

� If Pn converges to π fast enough and under appropriate moment
condition on h, then

σ2(h) = Varπ (h(X0)) + 2
�

j≥1

Covπ (h(X0), h(Xj)) <∞,

and

n
−1/2

n�

i=1

(h(Xi )− π(h))
w→ N(0, σ2(h)),

� We call σ2(h) the asymptotic variance of h.
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Asymptotic variance estimation for MCMC

� There are many Markov chain CLT results.

� See example Meyn & Tweedie (2009), Maxwell & Woodroofe (AP
2000).

� G. Jones (EJP 2006) gathers together many sets of assumptions
under which the Markov chain CLT holds.



Asymptotic variance estimation for MCMC

� The CLT naturally leads to an asymptotically valid confidence
interval for π(h):

π̂n(h)± z
σ̂n(h)√

n
,

for appropriate Gaussian quantile z , provided we have a consistent
estimate σ̂n(h) of σ(h).



Asymptotic variance estimation for MCMC

� There are many such estimators: Batch Means, overlapping Batch
Means, regenerative simulations ( G. Jones et al. (2009), A. Tan
(2009)). A popular estimator is the lag-window/kernel estimator,

Γ2
n =

n�

k=−n

w(kbn)γn(k),

� γn(k) = n−1
�n−k

j=1 (h(Xj)− πn(h)) (h(Xj+k)− πn(h)),

γn(−k) = γn(k), and b−1
n is the truncation point. I’ll refer to bn as

”bandwidth”.

� w : R→ [0, 1] has support [−1, 1], w(−x) = w(x), w(1) = 0, and
w(0) = 1.

�

Γ2
n(h) = γn(0) + 2

b−1
n −1�

k=1

w(kbn)γn(k).
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Asymptotic variance estimation for MCMC

� The kernel estimator is well known estimator with a rich literature.
Parzen (1960), Priestley (1981), Brockwell & Davis (1991)).

� A large literature in Econometrics as well: Andrews (1991); Hansen
(1992); de Jong & Davidson (2000) and their references.

� Operation research: H. Damerdji (1991,1994).

� Most of the work impose some fairly strong mixing conditions.

� Jones et al. (2006, 2009) studies the Markov chain case where P is
geometrically ergodic.
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Asymptotic variance estimation for AMCMC

We consider the adaptive MCMC case.

� Let {Pθ, θ ∈ Θ} be a family of TK. Pθ is inv. wrt π for any θ ∈ Θ.

� Define {(Xn, θn), n ≥ 0} a stoch. process s.t.

θn ∈ Fn, P (Xn ∈ A|Fn−1) = Pθn−1(Xn−1,A).

� {Xn, n ≥ 0} is an adaptive Markov chain (no longer Markov).
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Central limit theorem

� Throughout, we assume diminishing adaptation:

D(θn, θn−1) ≤ γn, where γn → 0.

� What can we say about Γ2
n(h) when {Xn, n ≥ 0} is an adaptive

MCMC process?

� We take a very familiar and standard approach to the question.
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Central limit theorem

� Assume π(h) = 0 and for simplicity assume that
γn(k) = n−1

�n−k
j=1 h(Xj)h(Xj+k). Define

gθ(x) :=
�

j≥0

P
j
θh(x), Gθ(x , y) = gθ(y)− Pθgθ(x).

� Define Gk = Gθk−(Xk−1,Xk). E (Gk |Fk−1) = 0. We know from
Andrieu & Moulines (06) that:

n�

k=1

h(Xk) =
n�

k=1

Gk + Rn,

where Rn = oP(n1/2).

� The same martingale difference sequence {Gk} can be used to
decompose Γ2

n(h).
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Ingredients of the Proof

Theorem

Under appropriate moments and ergodicity conditions,

n�

�=1

h(X�) =
n�

�=1

G� + Rn

Γ2
n(h) = n

−1
n�

�=1

G
2
� +

2

n

n�

�=1

�−1�

j=1

w ((�− j)bn) G�Gj + ζn.

where for p > 1,

E (|ζn|p) ≤ C

�
n
−1 + bn + b

1− 1
2∨

1
p

n

�p

, and

E





������
1

n

n�

�=1

�−1�

j=1

w ((�− j)bn)G�Gj

������

p

 ≤ C (nbn)
− p

2 n
− p

2 +1∨ p
2 .



Asymptotic variance estimation

Corollary

lim
n→∞

�
Γ2

n(h)− 1

n

n�

k=1

G
2
θk−1

(Xk−1,Xk)

�
= 0, in probab., (1)

provided nbn →∞.

The main condition is:

sup
θ∈Θ

|gθ(x)| ≤W (x), where sup
n≥0

E
�
W

2p(Xn)
�

<∞.



Few remarks

� The results says nothing about the CLT for the partial sum�n
k=1 h(Xk).

� When 1
n

�n
k=1 G 2

θk−1
(Xk−1,Xk) converges to a deterministic limit

σ2(h), say, then Γ2
n(h), also converges to σ2(h).

� Of course, under our moments conditions, this implies that
n−1/2

�n
k=1 h(Xk)

w→ N (0, σ2(h)).

� Same as with Markov chains.
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Few remarks

� But if the average square variation n−1
�n

k=1 G 2
θk−1

(Xk−1,Xk)

converges n probability to a stochastic limit Γ2(h), then of course
Γ2

n(h) also converges in probability to Γ2(h) and

n
−1/2

n�

k=1

h(Xk)
w→

�
Γ2(h)Z ,

where Z ∼ N(0, 1) independent of Γ2(h) (Hall & Heyde (80),
Theorem 3.2).

�
�

Γ2(h)Z is a mixture of Gaussians.

� But

lim
n→∞

Var

�
n
−1/2

n�

k=1

h(Xk)

�
= E

�
Γ2(h)

�
= σ2(h).

Thus is this case, Γ2
n(h) is not consistent for the asymptotic variance

σ2(h).
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Choice of the bandwidth

� One of the main limitations of this estimator is the difficulty in
choosing the bandwidth bn. Often bn = n−ρ, ρ ∈ {1/2, 2/3}
resulting in a slowly converging Γ2

n(h).

� Neave (Annals Math. Stat. 1970) criticized the assumption
nbn →∞ as ”a mathematically convenient assumption to ensure
consistency of the estimates, but which is unrealistic when such
estimators are used in practice where the value nbn cannot be zero”.

� Another way to look at it is that: killing both the remainder and the
off-diagonal term is a difficult exercise.
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Small ”bandwidth” asymptotics

� Neave (1970) suggested using bn = n−1 which is known to give an
inconsistent estimator but still confidence intervals can be
constructed.

� Kiefer & Vogelsang (2002,2005,2009) have recently further
developed the idea in the Econometrics literature under some
restrictive model assumptions.

� We extend the approach in the context of Markov Chains. Thus in
the sequel {Xn, n ≥ 0} is a Markov chain with invariant distribution
π and transition kernel P.
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Small ”bandwidth” asymptotics

� We saw above that:
n�

�=1

h(X�) =
n�

�=1

G� + Rn

Γ2
n(h) =

1

n

n�

�=1

n�

j=1

w((�− j)bn)G�Gj + ζn.

=
1

n

n�

�=1

G�

n−1�

j=0

w((�− 1− j)bn)Gj+1 + ζn.

� Define Wn,� = G�√
nσ(h)

, where σ2(h) = Eπ(G 2(X0,X1)), the asymp.

variance. And

Bn(t) =
�nt��

�=1

Wn,�, 0 ≤ t ≤ 1
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Small ”bandwidth” asymptotics

Then
n�

�=1

h(X�)√
nσ(h)

=
n�

�=1

Wn,� + R̃n = Bn(1) + R̃n,

and for bn = n−1,

n−1�

j=0

w((�− 1− j)bn)
Gj+1

σ(h)
√

n
= Zn ((�− 1)bn) .

where

Zn(t) =

� 1

0
w(t − u)dBn(u).



Small ”bandwidth” asymptotics

Thus with bn = n−1,

n�

�=1

h(X�)√
nσ(h)

= Bn(1) + R̃n

Γ2
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� 1

0
Zn(t)dBn(t) + ζn.

�� As n →∞, {Bn(t), 0 ≤ t ≤ 1} converges weakly to
{B(t), 0 ≤ t ≤ 1} the standard Brownian motion.

� Then we use Kurtz & Protter (AP 1992) on the weak convergence
of stochastic integrals to get.
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Small ”bandwidth” asymptotics

Theorem

Assume {Xn, n ≥ 0} is a Markov chain. Let {B(t), 0 ≤ t ≤ 1} be the

standard Brownian motion. If bn = n−1, then

Γ2
n(h)

w→ σ2(h)

� 1

0

� 1

0
w(t − s)dB(s)dB(t).

Furthermore, assuming Γ2
n(h) > 0 almost surely,

n−1/2
�n

j=1 h(Xj)�
Γ2

n(h)

w→ B(1)�� 1
0

� 1
0 w(t − s)dB(s)dB(t)

.



Small ”bandwidth” asymptotics

� We can then still construct a valid confidence interval for 0:

n
−1

n�

�=1

h(X�)± z̄

�
Γ2

n(h)√
n

.

� z̄ is the appropriate quantile of the distribution of
B(1)√R 1

0

R 1
0 w(t−s)dB(s)dB(t)

.

� We approximate this by Monte Carlo.



Small ”bandwidth” asymptotics

For the Parzen kernel, the distribution of B(1)√R 1
0

R 1
0 w(t−s)dB(s)dB(t)

.
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Small ”bandwidth” asymptotics

� The 97.5% quantile is estimated at 1.360.

� When π(h) �= 0 and we use
γn,k = n−1

�n−k
j=1 (h(Xj)− π̂n(h)) (h(Xj+k)− π̂n(h)) instead of

γn(k) = n−1
�n−k

j=1 h(Xj)h(Xj+k), a similar result holds.

� But the limiting distribution is different from B(1)√R 1
0

R 1
0 w(t−s)dB(s)dB(t)

.



AR(1) example

� For ρ = 0.95 and {�n, n ≥ 1} is an iid N(0, 1)

X0 = 0, and Xn = ρXn−1 + �n

.

� For |ρ| < 1, the chain is geometrically ergodic with target
distribution N(0, (1− ρ2)−1). We estimate µ =

�
xπ(x)dx = 0.

� We build a confidence interval for µ comparing the regular
bandwidth bn = n−1/2 with the small bandwidth bn = n−1.
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An example

bn = n−1/2 bn = n−1

N = 1000 0.83% 0.96
N = 5000 0.86% 0.97
N = 10, 000 0.865% 0.935
N = 20, 000 0.928% 0.950



An example

�(β|X ) =
n�

i=1

yixiβ − log
�
1 + e

xiβ
�
.

We assume a Gaussian prior distribution π(β) ∝ e−�β�
2/c . Posterior

distribution:
π (β|X ) ∝ e

�(β|X )
e
−�β�2/c .



An example

We build a Random Walk Metropolis to sample fom the posterior
distribution:

Algorithm

�� Given βn: propose β� ∼ N (βn,Σ).

� Set βn+1 = β� with prob. min
�
1, π̃(β�|X )

π̃(βn|X )

�
. Otherwise, set

βn+1 = βn.

We compare two choices of: Σ = σ�Σπ and Σ = 0.0005× I−1.



An example

bn = n−1/2 bn = n−1

Σ = σ�Σπ 0.940 0.942
Σ = 0.0005× Id 0.63 0.96

N = 20, 000
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