Asymptotic variance estimation for Adaptive MCMC

Yves Atchadé

Department of Statistics, University of Michigan Work partly supported by NSF grant DMS 0906631.

Based in part on collaborative work with Matias Cattaneo, University of Michigan.

January 4, 2011

 Variance estimation is an important aspect of Monte Carlo simulation.

$$\sigma^{2}(h) = \lim_{n \to \infty} \operatorname{Var}\left(n^{-1/2} \sum_{k=1}^{n} h(X_{k})\right)$$
$$= \operatorname{Var}_{\pi}(h(X_{0})) + \sum_{j \ge 1} \operatorname{Cov}_{\pi}(h(X_{0}), h(X_{j})),$$

for Markov chains.

We focus on the so-called lag-window estimator or kernel estimators:

$$\Gamma_n^2(h) = \sum_{k=-n}^n w(kb_n)\gamma_n(k),$$

For various class of processes, including Markov chains, It is known that when $nb_n \to \infty$, under regularity conditions, $\Gamma_n^2(h) \to \sigma^2(h)$.

 Variance estimation is an important aspect of Monte Carlo simulation.

$$\sigma^{2}(h) = \lim_{n \to \infty} \operatorname{Var}\left(n^{-1/2} \sum_{k=1}^{n} h(X_{k})\right)$$
$$= \operatorname{Var}_{\pi}(h(X_{0})) + \sum_{j \ge 1} \operatorname{Cov}_{\pi}(h(X_{0}), h(X_{j})),$$

for Markov chains.

We focus on the so-called lag-window estimator or kernel estimators:

$$\Gamma_n^2(h) = \sum_{k=-n}^n w(kb_n)\gamma_n(k),$$

► For various class of processes, including Markov chains, It is known that when $nb_n \rightarrow \infty$, under regularity conditions, $\Gamma_n^2(h) \rightarrow \sigma^2(h)$.

 Variance estimation is an important aspect of Monte Carlo simulation.

$$\sigma^{2}(h) = \lim_{n \to \infty} \operatorname{Var}\left(n^{-1/2} \sum_{k=1}^{n} h(X_{k})\right)$$
$$= \operatorname{Var}_{\pi}(h(X_{0})) + \sum_{j \ge 1} \operatorname{Cov}_{\pi}(h(X_{0}), h(X_{j})),$$

for Markov chains.

We focus on the so-called lag-window estimator or kernel estimators:

$$\Gamma_n^2(h) = \sum_{k=-n}^n w(kb_n)\gamma_n(k),$$

► For various class of processes, including Markov chains, It is known that when $nb_n \rightarrow \infty$, under regularity conditions, $\Gamma_n^2(h) \rightarrow \sigma^2(h)$.

For AMCMC, the behavior of Γ²_n(h) is similar. But we have to be careful when the limiting distribution in the CLT is a mixture of Gaussians.

The analysis of Γ²_n(h) is related to the asymptotics of quadratic forms of Markov chains

$$\sum_{1\leq \ell\leq j\leq n} w_n(\ell,j)h_n(X_\ell,X_j),$$

which has many applications in nonparametric time-series.

We will also introduce a "small bandwidth" version of Γ²_n(h) where b_n = 1/n. Γ²_n(h) is then inconsistent, but as we will see, valid and much improved confidence intervals can still constructed.

- ► For AMCMC, the behavior of Γ²_n(h) is similar. But we have to be careful when the limiting distribution in the CLT is a mixture of Gaussians.
- The analysis of Γ²_n(h) is related to the asymptotics of quadratic forms of Markov chains

$$\sum_{\leq \ell \leq j \leq n} w_n(\ell, j) h_n(X_\ell, X_j),$$

which has many applications in nonparametric time-series.

1

We will also introduce a "small bandwidth" version of Γ²_n(h) where b_n = 1/n. Γ²_n(h) is then inconsistent, but as we will see, valid and much improved confidence intervals can still constructed.

- ► For AMCMC, the behavior of Γ²_n(h) is similar. But we have to be careful when the limiting distribution in the CLT is a mixture of Gaussians.
- The analysis of Γ²_n(h) is related to the asymptotics of quadratic forms of Markov chains

$$\sum_{1\leq\ell\leq j\leq n}w_n(\ell,j)h_n(X_\ell,X_j),$$

which has many applications in nonparametric time-series.

We will also introduce a "small bandwidth" version of Γ²_n(h) where b_n = 1/n. Γ²_n(h) is then inconsistent, but as we will see, valid and much improved confidence intervals can still constructed.

Let {X_n, n ≥ 0} be a Markov chain with invariant distribution π and transition kernel P.

If Pⁿ converges to π fast enough and under appropriate moment condition on h, then

$$\sigma^{2}(h) = \operatorname{Var}_{\pi}(h(X_{0})) + 2\sum_{j\geq 1} \operatorname{Cov}_{\pi}(h(X_{0}), h(X_{j})) < \infty,$$

and

$$n^{-1/2}\sum_{i=1}^n \left(h(X_i) - \pi(h)\right) \stackrel{w}{\to} N(0, \sigma^2(h)),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• We call $\sigma^2(h)$ the asymptotic variance of h.

- Let {X_n, n ≥ 0} be a Markov chain with invariant distribution π and transition kernel P.
- If Pⁿ converges to π fast enough and under appropriate moment condition on h, then

$$\sigma^2(h) = \operatorname{Var}_{\pi}(h(X_0)) + 2\sum_{j\geq 1} \operatorname{Cov}_{\pi}(h(X_0), h(X_j)) < \infty,$$

and

$$n^{-1/2}\sum_{i=1}^n (h(X_i) - \pi(h)) \stackrel{\text{w}}{\to} N(0, \sigma^2(h)),$$

• We call $\sigma^2(h)$ the asymptotic variance of *h*.

- Let {X_n, n ≥ 0} be a Markov chain with invariant distribution π and transition kernel P.
- If Pⁿ converges to π fast enough and under appropriate moment condition on h, then

$$\sigma^2(h) = \operatorname{Var}_{\pi}(h(X_0)) + 2\sum_{j\geq 1} \operatorname{Cov}_{\pi}(h(X_0), h(X_j)) < \infty,$$

and

$$n^{-1/2}\sum_{i=1}^n (h(X_i) - \pi(h)) \stackrel{w}{\rightarrow} N(0, \sigma^2(h)),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• We call $\sigma^2(h)$ the asymptotic variance of h.

- There are many Markov chain CLT results.
- See example Meyn & Tweedie (2009), Maxwell & Woodroofe (AP 2000).
- G. Jones (EJP 2006) gathers together many sets of assumptions under which the Markov chain CLT holds.

The CLT naturally leads to an asymptotically valid confidence interval for π(h):

$$\hat{\pi}_n(h) \pm z \frac{\hat{\sigma}_n(h)}{\sqrt{n}},$$

for appropriate Gaussian quantile z, provided we have a consistent estimate $\hat{\sigma}_n(h)$ of $\sigma(h)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

There are many such estimators: Batch Means, overlapping Batch Means, regenerative simulations (G. Jones et al. (2009), A. Tan (2009)). A popular estimator is the lag-window/kernel estimator,

$$\Gamma_n^2 = \sum_{k=-n}^n w(kb_n)\gamma_n(k),$$

- ▶ $\gamma_n(k) = n^{-1} \sum_{j=1}^{n-k} (h(X_j) \pi_n(h)) (h(X_{j+k}) \pi_n(h)),$ $\gamma_n(-k) = \gamma_n(k),$ and b_n^{-1} is the truncation point. I'll refer to b_n as "bandwidth".
- ▶ $w : \mathbb{R} \to [0,1]$ has support [-1,1], w(-x) = w(x), w(1) = 0, and w(0) = 1.

$$\Gamma_n^2(h) = \gamma_n(0) + 2 \sum_{k=1}^{b_n^{-1}-1} w(kb_n)\gamma_n(k)$$

There are many such estimators: Batch Means, overlapping Batch Means, regenerative simulations (G. Jones et al. (2009), A. Tan (2009)). A popular estimator is the lag-window/kernel estimator,

$$\Gamma_n^2 = \sum_{k=-n}^n w(kb_n)\gamma_n(k),$$

- ► $\gamma_n(k) = n^{-1} \sum_{j=1}^{n-k} (h(X_j) \pi_n(h)) (h(X_{j+k}) \pi_n(h)),$ $\gamma_n(-k) = \gamma_n(k),$ and b_n^{-1} is the truncation point. I'll refer to b_n as "bandwidth".
- ▶ $w : \mathbb{R} \to [0,1]$ has support [-1,1], w(-x) = w(x), w(1) = 0, and w(0) = 1.

$$\Gamma_n^2(h) = \gamma_n(0) + 2 \sum_{k=1}^{b_n^{-1}-1} w(kb_n) \gamma_n(k).$$

There are many such estimators: Batch Means, overlapping Batch Means, regenerative simulations (G. Jones et al. (2009), A. Tan (2009)). A popular estimator is the lag-window/kernel estimator,

$$\Gamma_n^2 = \sum_{k=-n}^n w(kb_n)\gamma_n(k),$$

- ► $\gamma_n(k) = n^{-1} \sum_{j=1}^{n-k} (h(X_j) \pi_n(h)) (h(X_{j+k}) \pi_n(h)),$ $\gamma_n(-k) = \gamma_n(k),$ and b_n^{-1} is the truncation point. I'll refer to b_n as "bandwidth".
- ▶ $w : \mathbb{R} \to [0,1]$ has support [-1,1], w(-x) = w(x), w(1) = 0, and w(0) = 1.

$$\Gamma_n^2(h) = \gamma_n(0) + 2 \sum_{k=1}^{b_n^{-1}-1} w(kb_n)\gamma_n(k)$$

There are many such estimators: Batch Means, overlapping Batch Means, regenerative simulations (G. Jones et al. (2009), A. Tan (2009)). A popular estimator is the lag-window/kernel estimator,

$$\Gamma_n^2 = \sum_{k=-n}^n w(kb_n)\gamma_n(k),$$

- ► $\gamma_n(k) = n^{-1} \sum_{j=1}^{n-k} (h(X_j) \pi_n(h)) (h(X_{j+k}) \pi_n(h)),$ $\gamma_n(-k) = \gamma_n(k),$ and b_n^{-1} is the truncation point. I'll refer to b_n as "bandwidth".
- ▶ $w : \mathbb{R} \to [0,1]$ has support [-1,1], w(-x) = w(x), w(1) = 0, and w(0) = 1.

$$\Gamma_n^2(h) = \gamma_n(0) + 2\sum_{k=1}^{b_n^{-1}-1} w(kb_n)\gamma_n(k).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ▶ The kernel estimator is well known estimator with a rich literature. Parzen (1960), Priestley (1981), Brockwell & Davis (1991)).
- A large literature in Econometrics as well: Andrews (1991); Hansen (1992); de Jong & Davidson (2000) and their references.
- Operation research: H. Damerdji (1991,1994).
- Most of the work impose some fairly strong mixing conditions.
- Jones et al. (2006, 2009) studies the Markov chain case where P is geometrically ergodic.

- ► The kernel estimator is well known estimator with a rich literature. Parzen (1960), Priestley (1981), Brockwell & Davis (1991)).
- A large literature in Econometrics as well: Andrews (1991); Hansen (1992); de Jong & Davidson (2000) and their references.
- Operation research: H. Damerdji (1991,1994).
- Most of the work impose some fairly strong mixing conditions.
- Jones et al. (2006, 2009) studies the Markov chain case where P is geometrically ergodic.

- ► The kernel estimator is well known estimator with a rich literature. Parzen (1960), Priestley (1981), Brockwell & Davis (1991)).
- A large literature in Econometrics as well: Andrews (1991); Hansen (1992); de Jong & Davidson (2000) and their references.
- Operation research: H. Damerdji (1991,1994).
- Most of the work impose some fairly strong mixing conditions.
- Jones et al. (2006, 2009) studies the Markov chain case where P is geometrically ergodic.

- ▶ The kernel estimator is well known estimator with a rich literature. Parzen (1960), Priestley (1981), Brockwell & Davis (1991)).
- A large literature in Econometrics as well: Andrews (1991); Hansen (1992); de Jong & Davidson (2000) and their references.
- Operation research: H. Damerdji (1991,1994).
- Most of the work impose some fairly strong mixing conditions.
- Jones et al. (2006, 2009) studies the Markov chain case where P is geometrically ergodic.

We consider the adaptive MCMC case.

▶ Let $\{P_{\theta}, \theta \in \Theta\}$ be a family of TK. P_{θ} is inv. wrt π for any $\theta \in \Theta$.

▶ Define $\{(X_n, \theta_n), n \ge 0\}$ a stoch. process s.t.

 $\theta_n \in \mathcal{F}_n, \quad \mathbb{P}(X_n \in A | \mathcal{F}_{n-1}) = P_{\theta_{n-1}}(X_{n-1}, A).$

{X_n, n ≥ 0} is an adaptive Markov chain (no longer Markov).

We consider the adaptive MCMC case.

- ▶ Let $\{P_{\theta}, \theta \in \Theta\}$ be a family of TK. P_{θ} is inv. wrt π for any $\theta \in \Theta$.
- Define $\{(X_n, \theta_n), n \ge 0\}$ a stoch. process s.t.

$$\theta_n \in \mathcal{F}_n$$
, $\mathbb{P}(X_n \in A | \mathcal{F}_{n-1}) = P_{\theta_{n-1}}(X_{n-1}, A)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $\{X_n, n \ge 0\}$ is an adaptive Markov chain (no longer Markov).

We consider the adaptive MCMC case.

- ▶ Let $\{P_{\theta}, \theta \in \Theta\}$ be a family of TK. P_{θ} is inv. wrt π for any $\theta \in \Theta$.
- Define $\{(X_n, \theta_n), n \ge 0\}$ a stoch. process s.t.

$$\theta_n \in \mathcal{F}_n, \quad \mathbb{P}(X_n \in A | \mathcal{F}_{n-1}) = P_{\theta_{n-1}}(X_{n-1}, A).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $\{X_n, n \ge 0\}$ is an adaptive Markov chain (no longer Markov).

Throughout, we assume diminishing adaptation:

 $D(\theta_n, \theta_{n-1}) \leq \gamma_n$, where $\gamma_n \to 0$.

- What can we say about Γ²_n(h) when {X_n, n ≥ 0} is an adaptive MCMC process?
- We take a very familiar and standard approach to the question.

Throughout, we assume diminishing adaptation:

$$D(\theta_n, \theta_{n-1}) \leq \gamma_n, \text{ where } \gamma_n \to 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

What can we say about Γ²_n(h) when {X_n, n ≥ 0} is an adaptive MCMC process?

• We take a very familiar and standard approach to the question.

Throughout, we assume diminishing adaptation:

$$D(heta_n, heta_{n-1}) \leq \gamma_n, \quad ext{where } \gamma_n o 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- What can we say about Γ²_n(h) when {X_n, n ≥ 0} is an adaptive MCMC process?
- ▶ We take a very familiar and standard approach to the question.

Assume $\pi(h) = 0$ and for simplicity assume that $\gamma_n(k) = n^{-1} \sum_{j=1}^{n-k} h(X_j) h(X_{j+k})$. Define

$$g_{ heta}(x) := \sum_{j\geq 0} P^j_{ heta} h(x), \quad G_{ heta}(x,y) = g_{ heta}(y) - P_{ heta} g_{ heta}(x).$$

▶ Define $G_k = G_{\theta_{k-1}}(X_{k-1}, X_k)$. $\mathbb{E}(G_k | \mathcal{F}_{k-1}) = 0$. We know from Andrieu & Moulines (06) that:

$$\sum_{k=1}^n h(X_k) = \sum_{k=1}^n G_k + R_n$$

where $R_n = o_P(n^{1/2})$.

► The same martingale difference sequence {G_k} can be used to decompose Γ²_n(h).

• Assume $\pi(h) = 0$ and for simplicity assume that $\gamma_n(k) = n^{-1} \sum_{j=1}^{n-k} h(X_j) h(X_{j+k})$. Define

$$g_{ heta}(x) := \sum_{j\geq 0} P^j_{ heta} h(x), \quad G_{ heta}(x,y) = g_{ heta}(y) - P_{ heta} g_{ heta}(x).$$

▶ Define $G_k = G_{\theta_{k-1}}(X_{k-1}, X_k)$. $\mathbb{E}(G_k | \mathcal{F}_{k-1}) = 0$. We know from Andrieu & Moulines (06) that:

$$\sum_{k=1}^n h(X_k) = \sum_{k=1}^n G_k + R_n$$

where $R_n = o_P(n^{1/2})$.

► The same martingale difference sequence {G_k} can be used to decompose Γ²_n(h).

Assume $\pi(h) = 0$ and for simplicity assume that $\gamma_n(k) = n^{-1} \sum_{j=1}^{n-k} h(X_j) h(X_{j+k})$. Define

$$g_{ heta}(x) := \sum_{j\geq 0} P^j_{ heta} h(x), \quad G_{ heta}(x,y) = g_{ heta}(y) - P_{ heta} g_{ heta}(x).$$

▶ Define $G_k = G_{\theta_{k-1}}(X_{k-1}, X_k)$. $\mathbb{E}(G_k | \mathcal{F}_{k-1}) = 0$. We know from Andrieu & Moulines (06) that:

$$\sum_{k=1}^n h(X_k) = \sum_{k=1}^n G_k + R_n$$

where $R_n = o_P(n^{1/2})$.

The same martingale difference sequence {G_k} can be used to decompose Γ²_n(h).

Ingredients of the Proof

Theorem

Under appropriate moments and ergodicity conditions,

$$\sum_{\ell=1}^n h(X_\ell) = \sum_{\ell=1}^n G_\ell + R_n$$

$$\Gamma_n^2(h) = n^{-1} \sum_{\ell=1}^n G_\ell^2 + \frac{2}{n} \sum_{\ell=1}^n \sum_{j=1}^{\ell-1} w\left((\ell-j)b_n\right) G_\ell G_j + \zeta_n.$$

where for p > 1,

$$\mathbb{E}\left(|\zeta_n|^p
ight)\leq C\left(n^{-1}+b_n+b_n^{1-rac{1}{2}eerac{1}{p}}
ight)^p,$$
 and

$$\mathbb{E}\left(\left|\frac{1}{n}\sum_{\ell=1}^{n}\sum_{j=1}^{\ell-1}w\left((\ell-j)b_{n}\right)G_{\ell}G_{j}\right|^{p}\right)\leq C\left(nb_{n}\right)^{-\frac{p}{2}}n^{-\frac{p}{2}+1\vee\frac{p}{2}}.$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ のへで

Asymptotic variance estimation

Corollary

$$\lim_{n\to\infty}\left(\Gamma_n^2(h)-\frac{1}{n}\sum_{k=1}^n G_{\theta_{k-1}}^2(X_{k-1},X_k)\right)=0, \quad \text{in probab.}, \qquad (1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

provided $nb_n \rightarrow \infty$.

The main condition is:

$$\sup_{\theta\in\Theta} |g_\theta(x)| \leq W(x), \quad \text{where} \quad \sup_{n\geq 0} \mathbb{E}\left(W^{2p}(X_n)\right) < \infty.$$

- The results says nothing about the CLT for the partial sum $\sum_{k=1}^{n} h(X_k)$.
- ▶ When $\frac{1}{n} \sum_{k=1}^{n} G_{\theta_{k-1}}^2(X_{k-1}, X_k)$ converges to a deterministic limit $\sigma^2(h)$, say, then $\Gamma_n^2(h)$, also converges to $\sigma^2(h)$.

- ▶ Of course, under our moments conditions, this implies that $n^{-1/2} \sum_{k=1}^{n} h(X_k) \xrightarrow{w} \mathcal{N}(0, \sigma^2(h)).$
- Same as with Markov chains.

- The results says nothing about the CLT for the partial sum $\sum_{k=1}^{n} h(X_k)$.
- ▶ When $\frac{1}{n} \sum_{k=1}^{n} G_{\theta_{k-1}}^2(X_{k-1}, X_k)$ converges to a deterministic limit $\sigma^2(h)$, say, then $\Gamma_n^2(h)$, also converges to $\sigma^2(h)$.

- Of course, under our moments conditions, this implies that $n^{-1/2} \sum_{k=1}^{n} h(X_k) \xrightarrow{w} \mathcal{N}(0, \sigma^2(h)).$
- Same as with Markov chains.

- The results says nothing about the CLT for the partial sum $\sum_{k=1}^{n} h(X_k)$.
- ▶ When $\frac{1}{n} \sum_{k=1}^{n} G_{\theta_{k-1}}^2(X_{k-1}, X_k)$ converges to a deterministic limit $\sigma^2(h)$, say, then $\Gamma_n^2(h)$, also converges to $\sigma^2(h)$.

- Of course, under our moments conditions, this implies that $n^{-1/2} \sum_{k=1}^{n} h(X_k) \xrightarrow{w} \mathcal{N}(0, \sigma^2(h)).$
- Same as with Markov chains.

▶ But if the average square variation $n^{-1} \sum_{k=1}^{n} G_{\theta_{k-1}}^2(X_{k-1}, X_k)$ converges n probability to a stochastic limit $\Gamma^2(h)$, then of course $\Gamma_n^2(h)$ also converges in probability to $\Gamma^2(h)$ and

$$n^{-1/2}\sum_{k=1}^n h(X_k) \xrightarrow{w} \sqrt{\Gamma^2(h)}Z,$$

where $Z \sim N(0,1)$ independent of $\Gamma^2(h)$ (Hall & Heyde (80), Theorem 3.2).

•
$$\sqrt{\Gamma^2(h)}Z$$
 is a mixture of Gaussians.

► But

$$\lim_{n\to\infty}\operatorname{Var}\left(n^{-1/2}\sum_{k=1}^n h(X_k)\right) = \mathbb{E}\left(\Gamma^2(h)\right) = \sigma^2(h).$$

Thus is this case, $\Gamma_n^2(h)$ is not consistent for the asymptotic variance $\sigma^2(h)$.

▶ But if the average square variation $n^{-1} \sum_{k=1}^{n} G_{\theta_{k-1}}^2(X_{k-1}, X_k)$ converges n probability to a stochastic limit $\Gamma^2(h)$, then of course $\Gamma_n^2(h)$ also converges in probability to $\Gamma^2(h)$ and

$$n^{-1/2}\sum_{k=1}^n h(X_k) \xrightarrow{w} \sqrt{\Gamma^2(h)}Z,$$

where $Z \sim N(0,1)$ independent of $\Gamma^2(h)$ (Hall & Heyde (80), Theorem 3.2).

•
$$\sqrt{\Gamma^2(h)}Z$$
 is a mixture of Gaussians.

But

$$\lim_{n\to\infty}\operatorname{Var}\left(n^{-1/2}\sum_{k=1}^n h(X_k)\right) = \mathbb{E}\left(\Gamma^2(h)\right) = \sigma^2(h).$$

Thus is this case, $\Gamma_n^2(h)$ is not consistent for the asymptotic variance $\sigma^2(h)$.

Choice of the bandwidth

- One of the main limitations of this estimator is the difficulty in choosing the bandwidth b_n. Often b_n = n^{-ρ}, ρ ∈ {1/2, 2/3} resulting in a slowly converging Γ²_n(h).
- ▶ Neave (Annals Math. Stat. 1970) criticized the assumption $nb_n \rightarrow \infty$ as "a mathematically convenient assumption to ensure consistency of the estimates, but which is unrealistic when such estimators are used in practice where the value nb_n cannot be zero".
- Another way to look at it is that: killing both the remainder and the off-diagonal term is a difficult exercise.

Choice of the bandwidth

- One of the main limitations of this estimator is the difficulty in choosing the bandwidth b_n. Often b_n = n^{-ρ}, ρ ∈ {1/2,2/3} resulting in a slowly converging Γ²_n(h).
- Neave (Annals Math. Stat. 1970) criticized the assumption nb_n → ∞ as "a mathematically convenient assumption to ensure consistency of the estimates, but which is unrealistic when such estimators are used in practice where the value nb_n cannot be zero".
- Another way to look at it is that: killing both the remainder and the off-diagonal term is a difficult exercise.

- ► Neave (1970) suggested using b_n = n⁻¹ which is known to give an inconsistent estimator but still confidence intervals can be constructed.
- Kiefer & Vogelsang (2002,2005,2009) have recently further developed the idea in the Econometrics literature under some restrictive model assumptions.
- We extend the approach in the context of Markov Chains. Thus in the sequel {X_n, n ≥ 0} is a Markov chain with invariant distribution π and transition kernel P.

- ► Neave (1970) suggested using b_n = n⁻¹ which is known to give an inconsistent estimator but still confidence intervals can be constructed.
- Kiefer & Vogelsang (2002,2005,2009) have recently further developed the idea in the Econometrics literature under some restrictive model assumptions.
- We extend the approach in the context of Markov Chains. Thus in the sequel $\{X_n, n \ge 0\}$ is a Markov chain with invariant distribution π and transition kernel P.

- ► Neave (1970) suggested using b_n = n⁻¹ which is known to give an inconsistent estimator but still confidence intervals can be constructed.
- Kiefer & Vogelsang (2002,2005,2009) have recently further developed the idea in the Econometrics literature under some restrictive model assumptions.
- We extend the approach in the context of Markov Chains. Thus in the sequel $\{X_n, n \ge 0\}$ is a Markov chain with invariant distribution π and transition kernel *P*.

We saw above that:

$$\sum_{\ell=1}^n h(X_\ell) = \sum_{\ell=1}^n G_\ell + R_n$$

$$\begin{split} \Gamma_n^2(h) &= \frac{1}{n} \sum_{\ell=1}^n \sum_{j=1}^n w((\ell-j)b_n) G_\ell G_j + \zeta_n. \\ &= \frac{1}{n} \sum_{\ell=1}^n G_\ell \sum_{j=0}^{n-1} w((\ell-1-j)b_n) G_{j+1} + \zeta_n. \end{split}$$

▶ Define $W_{n,\ell} = \frac{G_{\ell}}{\sqrt{n\sigma(h)}}$, where $\sigma^2(h) = \mathbb{E}_{\pi}(G^2(X_0, X_1))$, the asymp. variance. And

$$B_n(t) = \sum_{\ell=1}^{\lfloor nt
floor} W_{n,\ell}, \quad 0 \le t \le 1$$

We saw above that:

$$\sum_{\ell=1}^n h(X_\ell) = \sum_{\ell=1}^n G_\ell + R_n$$

$$\begin{split} \Gamma_n^2(h) &= \frac{1}{n} \sum_{\ell=1}^n \sum_{j=1}^n w((\ell-j)b_n) G_\ell G_j + \zeta_n. \\ &= \frac{1}{n} \sum_{\ell=1}^n G_\ell \sum_{j=0}^{n-1} w((\ell-1-j)b_n) G_{j+1} + \zeta_n. \end{split}$$

► Define $W_{n,\ell} = \frac{G_{\ell}}{\sqrt{n\sigma(h)}}$, where $\sigma^2(h) = \mathbb{E}_{\pi}(G^2(X_0, X_1))$, the asymp. variance. And

$$B_n(t) = \sum_{\ell=1}^{\lfloor nt \rfloor} W_{n,\ell}, \quad 0 \le t \le 1$$

Then

$$\sum_{\ell=1}^n \frac{h(X_\ell)}{\sqrt{n}\sigma(h)} = \sum_{\ell=1}^n W_{n,\ell} + \tilde{R}_n = B_n(1) + \tilde{R}_n,$$

and for $b_n = n^{-1}$,

$$\sum_{j=0}^{n-1} w((\ell-1-j)b_n) \frac{G_{j+1}}{\sigma(h)\sqrt{n}} = Z_n((\ell-1)b_n).$$

where

$$Z_n(t)=\int_0^1 w(t-u)dB_n(u).$$

Thus with $b_n = n^{-1}$,

$$\sum_{\ell=1}^{n} \frac{h(X_{\ell})}{\sqrt{n}\sigma(h)} = B_n(1) + \tilde{R}_n$$
$$\Gamma_n^2(h) = \sigma^2(h)\sigma^2(h) \int_0^1 Z_n(t) dB_n(t) + \zeta_n.$$

As $n \to \infty$, $\{B_n(t), 0 \le t \le 1\}$ converges weakly to $\{B(t), 0 \le t \le 1\}$ the standard Brownian motion.

Then we use Kurtz & Protter (AP 1992) on the weak convergence of stochastic integrals to get.

Thus with $b_n = n^{-1}$,

$$\sum_{\ell=1}^{n} \frac{h(X_{\ell})}{\sqrt{n}\sigma(h)} = B_n(1) + \tilde{R}_n$$
$$\Gamma_n^2(h) = \sigma^2(h)\sigma^2(h) \int_0^1 Z_n(t) dB_n(t) + \zeta_n$$

- As $n \to \infty$, $\{B_n(t), 0 \le t \le 1\}$ converges weakly to $\{B(t), 0 \le t \le 1\}$ the standard Brownian motion.
- Then we use Kurtz & Protter (AP 1992) on the weak convergence of stochastic integrals to get.

Theorem

Assume $\{X_n, n \ge 0\}$ is a Markov chain. Let $\{B(t), 0 \le t \le 1\}$ be the standard Brownian motion. If $b_n = n^{-1}$, then

$$\Gamma_n^2(h) \xrightarrow{w} \sigma^2(h) \int_0^1 \int_0^1 w(t-s) dB(s) dB(t).$$

Furthermore, assuming $\Gamma_n^2(h) > 0$ almost surely,

$$\frac{n^{-1/2}\sum_{j=1}^n h(X_j)}{\sqrt{\Gamma_n^2(h)}} \xrightarrow{w} \frac{B(1)}{\sqrt{\int_0^1 \int_0^1 w(t-s)dB(s)dB(t)}}.$$

We can then still construct a valid confidence interval for 0:

$$n^{-1}\sum_{\ell=1}^n h(X_\ell) \pm \bar{z} \frac{\sqrt{\Gamma_n^2(h)}}{\sqrt{n}}$$

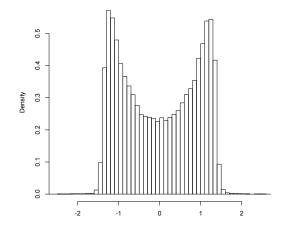
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\overline{z} \text{ is the appropriate quantile of the distribution of } \\ \frac{B(1)}{\sqrt{\int_0^1 \int_0^1 w(t-s)dB(s)dB(t)}}.$

We approximate this by Monte Carlo.

Small "bandwidth" asymptotics For the Parzen kernel, the distribution of $\frac{B(1)}{\sqrt{\int_0^1 \int_0^1 w(t-s)dB(s)dB(t)}}$.

Histogram of the limiting dist.



(日)、(四)、(E)、(E)、(E)

► The 97.5% quantile is estimated at 1.360.

▶ When
$$\pi(h) \neq 0$$
 and we use
 $\gamma_{n,k} = n^{-1} \sum_{j=1}^{n-k} (h(X_j) - \hat{\pi}_n(h)) (h(X_{j+k}) - \hat{\pi}_n(h))$ instead of
 $\gamma_n(k) = n^{-1} \sum_{j=1}^{n-k} h(X_j) h(X_{j+k})$, a similar result holds.

► But the limiting distribution is different from $\frac{B(1)}{\sqrt{\int_0^1 \int_0^1 w(t-s)dB(s)dB(t)}}$.

AR(1) example

▶ For
$$\rho = 0.95$$
 and $\{\epsilon_n, n \ge 1\}$ is an iid $N(0, 1)$
 $X_0 = 0$, and $X_n = \rho X_{n-1} + \epsilon_n$

For |ρ| < 1, the chain is geometrically ergodic with target distribution N(0, (1 − ρ²)⁻¹). We estimate μ = ∫ xπ(x)dx = 0.

We build a confidence interval for µ comparing the regular bandwidth b_n = n^{-1/2} with the small bandwidth b_n = n⁻¹.

AR(1) example

.

For
$$\rho = 0.95$$
 and $\{\epsilon_n, n \ge 1\}$ is an iid $N(0, 1)$

$$X_0 = 0$$
, and $X_n = \rho X_{n-1} + \epsilon_n$

- For |ρ| < 1, the chain is geometrically ergodic with target distribution N(0, (1 − ρ²)⁻¹). We estimate μ = ∫ xπ(x)dx = 0.
- We build a confidence interval for µ comparing the regular bandwidth b_n = n^{-1/2} with the small bandwidth b_n = n⁻¹.

	$b_n = n^{-1/2}$	$b_n = n^{-1}$
N = 1000	0.83%	0.96
N = 5000	0.86%	0.97
N = 10,000	0.865%	0.935
N = 20,000	0.928%	0.950

$$\ell(\beta|X) = \sum_{i=1}^{n} y_i x_i \beta - \log(1 + e^{x_i \beta}).$$

We assume a Gaussian prior distribution $\pi(\beta) \propto e^{-\|\beta\|^2/c}$. Posterior distribution:

 $\pi\left(\beta|X\right)\propto e^{\ell\left(\beta|X
ight)}e^{-\|eta\|^2/c}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

We build a Random Walk Metropolis to sample fom the posterior distribution:

Algorithm

We compare two choices of: $\Sigma = \sigma_{\star} \Sigma_{\pi}$ and $\Sigma = 0.0005 \times \mathcal{I}^{-1}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	$b_n = n^{-1/2}$	$b_n = n^{-1}$
$\Sigma = \sigma_{\star} \Sigma_{\pi}$	0.940	0.942
$\Sigma = 0.0005 \times I_d$	0.63	0.96

N = 20,000