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Introduction

Let F be a probability distribution.

We want to calculate some feature of F ; for example, an
expectation

EF [g(X )] =

∫
g(x)F (dx)

or a quantile

F−1(p) = inf{x : F (x) ≥ p} 0 < p < 1 .



Introduction

In principle estimation is simple: Observe a realization of a Harris
ergodic Markov chain Φ = {Xn} having target F and use the
sample quantities

ḡn =
1

n

n−1∑
i=0

g(Xi ) and Qn(p) = inf{x : Fn(x) ≥ p}

The estimates are more valuable if we can also assess the Monte
Carlo error

ḡn − EF [g(X )] and Qn(p)− F−1(p)

This is usually done through a central limit theorem (CLT).



Regenerative Simulation

Basic Assumption: There exists 0 ≤ s(x) ≤ 1 and a p.m. Q so that

P(x ,A) ≥ s(x)Q(A) ∀ x ∀ A

Then

P(x ,A) = s(x)Q(A) + (1− s(x))
P(x ,A)− s(x)Q(A)

1− s(x)

Resulting in
Φ′ = {(X0, δ0), (X1, δ1), . . .}

Retrospective RS:

Pr(δi = 1 |Xi = x ,Xi+1 = y) =
s(x)Q(dy)

P(x , dy)



Estimating Expectations with RS

Regeneration times: 0 = τ0 < τ1 < τ2 < · · ·

Define Nt = τt − τt−1 and

St =
τt−1∑
j=τt−1

g(Xj)

Then (St ,Nt) are iid. Moreover,

ḡτR :=
S

N

a.s.→ EF [g(X )] R →∞ .

Thm (Hobert, J, Presnell and Rosenthal (Bka, 2002)) If Φ is
geometrically ergodic and EF |g(X )|2+ε <∞ some ε > 0, then

√
R(ḡτR − EF [g(X )])

d→ N(0, σ2g ) R →∞ .



Estimating Quantiles with RS

For each x ∈ R

FτR (x) =
S

N
=

1

τR

τR−1∑
j=0

I (Xj ≤ x)

and it is easy to prove a Glivenko-Cantelli result

sup
−∞<x<∞

|FτR (x)− F (x)| a.s.→ 0 R →∞ .

Notice that a CLT holds for FτR (x) by the earlier result on
estimating expectations.



Estimating Quantiles with RS

Thm Assume Φ is geometrically ergodic and that F ′(Q(p)) is
positive and finite Then

√
R(QτR (p)− Q(p))

d→ N(0, σ2p) R →∞ .

Remarks
There exists an easily computed consistent estimator of σ2p but
requires estimating F ′.

We have simliar results for quantile estimators based on using
importance sampling. This is useful when trying to estimate an
extreme quantile.



Linear Mixed Models

HMO data (Hodges, JRSSB 1998): The response is the monthly
plan premium and the regressors are average expenses per
admission and whether the plan is in New England or not.

Y |β, λR ∼ N341(Xβ, λ−1R I341)

β|λR ∼ N3(b,B−1)

λR ∼ Gamma(r1, r2)

β|λR , y = multivariate normal and λR |β, y = Gamma

Thm (Johnson and J, EJS, 2010) The deterministic and random
scan Gibbs samplers are geometrically ergodic.



Gibbs for Linear Mixed Models

b, B, r1, r2 were chosen via an empirical Bayes-like approach.

Implement RS to estimate the Monte Carlo error in the estimate of
mean of β1 and the median. Used R = 100 regenerations.

Estimate MCSE

E [β1|y ] 3.90 .007
median Fβ1|y 3.85 .012



Where are we?

• Regenerative simulation provides an elegant method for
estimating expectations and quantiles.

• We have CLTs for the Monte Carlo error for estimating
expectations and quantiles.

• We have also shown that RS together with importance
sampling can be used for both purposes. (CLT)

• RS has been shown to work well in Gibbs samplers and in
simulated tempering.

BUT

• RS requires a minorization condition.

• RS has been shown to be impractical in high-dimensions.



Logit-Normal GLMM

For i = 1, . . . , q and j = 1, . . . ,mi

Yij |ui
ind∼ Ber(pij) ui

iid∼ N(0, σ2) logit(pij) = βxij + ui

Goal: Maximum likelihood estimation of (β, σ2)

Algorithms: Monte Carlo Newton-Raphson, Monte Carlo EM,
Monte Carlo Maximum Likelihood–All require simulation from

π(u|y , β, σ) ∝ exp


q∑

i=1

uiyi+ − mi∑
j=1

log(1 + eβxij+ui )−
u2i

2σ2





Logit-Normal GLMM

Use a full-dimensional random walk Metropolis having proposal

U ∼ Nq(ut−1, τ
2Iq)

Thm The random walk sampler is geometrically ergodic.

Mykland, Tierney and Yu (JASA, 1995) give a formula for doing
retrospective regeneration. A regeneration can only occur when

• the proposal is accepted and

• the chain is in a hypercube centered at some point ũ

The smaller the hypercube, the larger the probability of
regeneration.



Logit-Normal GLMM

Numerical experiment:

• q = 10, mi = 5

• Simulated a chain of length 106

• Hypercube centered at overall mean of simulated values

• Width of hypercube given by a multiple of the sample
variance of the simulated values

• Simulated another chain of length 106 and observed 391,804
accepted proposals

We could find no acceptable trade-off between size of hypercube
and probability of regeneration which was 2× 10−6 or smaller.



Component-wise MCMC

Let P1, . . . ,Pd be Markov kernels having the same invariant
distribution F . Then

Pcomp = P1 · · ·Pd

is a systematic scan component-wise sampler with invariant
distribution F .

If each Pi is a Gibbs update, then Pcomp is a Gibbs sampler.

If at least one of the Pi are Metropolis-Hastings updates, then
Pcomp is a Metropolis-Hastings-within-Gibbs sampler.



RS in Component-wise MCMC

We derive sufficient conditions on the proposals for the embedded
MH updates that guarantee

Pcomp(x ,A) ≥ s(x)Q(A)

but these formulas are technical and not reported here.

Conditional on accepting every component-wise proposal, the
probability of regeneration is

Pr(δi = 1 |Xi = x ,Xi+1 = y) =
s(x)Q(dy)

Pcomp(x , dy)



Logit-Normal GLMM

For i = 1, . . . , q and j = 1, . . . ,mi

Yij |ui
ind∼ Ber(pij) ui

iid∼ N(0, σ2) logit(pij) = βxij + ui

Thm The component-wise independence sampler with target
π(u|y , β, σ) and component-wise proposals ui ∼ N1(0, σ2) is
uniformly ergodic.

Empirical example:

• Benchmark Example: xij = j/15, q = 10, mi = 15.

• 1000 independent chains with R = 100, 50, 25 regenerations

• R = 100: Average chain length was 1,073,406 (105,303)

• Average tour length was 10, 712



Adaptive Component-wise MCMC

Pcomp,t = P1,t · · ·Pd ,t

where each component update Pi can be Gibbs or MH but there is
at least one MH.

• Make draws for Gibbs updates and draw candidates for each
MH component.

• If every candidate is accepted, check for regeneration.

• If regeneration, update each proposal distribution.

Based on method of Gilks, Roberts and Sahu (JASA, 1998).



Bivariate Normal Example

.34φ1(x) + .33φ2(x) + .33φ3(x)

where φ1 is a bivariate standard normal and φ2 and φ3 are
bivariate normals with means (−3,−3)T and (2, 2)T and variances(

1 .9
.9 1

) (
1 −.9
−.9 1

)
Consider using the component-wise independence sampler where
the proposals are for i = 1, 2, 3

pi ∼ N(µi , σ
2
i )

The adaptation will be to set each µi to the current overall mean
for the ith component and setting σi to be 110% of the current
standard deviation.



Bivariate Normal Example

Compare CWIS-Adapt with CWIS-RS in terms of the confidence
intervals used to estimate the Monte Carlo error in the estimate of
EFX2 = −.33. Ran 1000 replications, each of length 105

Method Coverage Half-width Number of tours

CWIS-RS .931 (.008) .140 (.012) 2337 (458)
CWIS-Adapt .954 (.007) .168 (.015) 2236 (170)



Logit-normal example

Compare CWIS-Adapt with CWIS-RS in terms of the confidence
intervals for mles of (β, σ)

Ascent-based Monte Carlo EM (Caffo, J, Jank, JRSSB 2005)
adaptively chooses the number of regenerations within each
iteration.

Benchmark Example: xij = j/15, q = 10, mi = 15.

Ran 500 replications, each starting with R = 25, adaptation was
performed in the same way as the bivariate normal example.

Method Coverage Half-width

CWIS-RS .929 (.011) .233 (.021)
CWIS-Adapt .953 (.009) .334 (.039)



Summary

• Quantiles are often of interest in MCMC.

• Developed methods for estimating the MC error of quantile
estimates based on CLTs using RS and importance sampling.

• Considered using RS in component-wise MCMC samplers.

• RS can work in component-wise samplers when it fails in
full-dimensional updates.

• Gave examples where component-wise adaptive methods using
RS worked well.

• Currently working on incorporating quantile estimation into
adaptive methods.


