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Abstract

The problem of simulating from distributions with intractable normalizing constants

has received much attention in recent literature. In this talk, we introduce a new

algorithm, the so-called adaptive Monte Carlo Metropolis-Hastings (AMCMH)

algorithm, for tackling this problem. At each iteration, AMCMH replaces the unknown

normalizing constant ratio by a Monte Carlo estimate which is calculated using all

samples generated so far in the run. Under mild conditions, we show that AMCMH is

ergodic, and the weak law of large numbers still holds for it. AMCMH represents a

new type of adaptive MCMC algorithms for which the stationary distribution is

changed from iteration to iteration.
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The problem

Suppose we have a dataset X generated from a statistical model with the likelihood
function

f (x |θ) =
1

κ(θ)
exp{−U(x , θ)}, x ∈ X , θ ∈ Θ, (1)

where θ is the parameter vector of the model, and κ(θ) is the normalizing constant
which depends on θ and is not available in closed form.

The posterior density of θ is given by

π(θ|x) ∝ 1

κ(θ)
exp{−U(x , θ)}π(θ). (2)

How to sample from π(θ|x) puts a great challenge on current statistical methods due

to the intractable constant κ(θ).
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Approximation Methods
Auxiliary Variable MCMC
Monte Carlo Metropolis-Hastings

Maximum Pseudo-likelihood Approach

Besag (1974) proposed to approximate the likelihood function by a tractable
pseudo-likelihood function which ignores neighboring dependence of the data.

The method is easy to use, but it typically performs less satisfactory for the models
with strong neighboring dependence.

Besag, J.E. (1974). Spatial interaction and the statistical analysis of lattice
systems. JRSS-B, 36, 192-236.
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Approximation Methods
Auxiliary Variable MCMC
Monte Carlo Metropolis-Hastings

Monte Carlo MLE

Geyer and Thompson (1992) proposed to approximate κ(θ) using an importance
sampling approach.
Let θ∗ denote an initial guess of θ, and let y1, . . . , ym denote random samples
simulated from f (y |θ∗). Then

log fm(x |θ) = −U(x , θ)− log(κ(θ∗))− log

(
1

m

m∑

i=1

exp{U(yi , θ
∗)− U(yi , θ)}

)
, (3)

will approach to log f (x |θ) as m →∞.

The estimator θ̂ = arg maxθ log fm(x |θ) is called the MCMLE of θ.

Geyer, C. and Thompson, E. (1992), “Constrained Monte Carlo Maximum
Likelihood for Dependent Data,” JRSS-B, 54, 657-699.
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Exchange Algorithm

1. Propose a candidate point ϑ from a proposal distribution denoted by q(ϑ|θ, x).

2. Generate an auxiliary variable y ∼ f (y |ϑ) using a perfect sampler (Propp and
Wilson, 1996).

3. Accept ϑ with probability min{1, r(θ, ϑ|x)}, where

r(θ, ϑ|x) =
π(ϑ)f (x |ϑ)f (y |θ)q(θ|ϑ, x)

π(θ)f (x |θ)f (y |ϑ)q(ϑ|θ, x)
.

Møller et al. (2006), “An Efficient Markov chain Monte Carlo Method for
Distributions with Intractable Normalizing Constants,” Biometrika, 93,
451-458.
Murray et al. (2006), “MCMC for Doubly-Intractable Distributions,” Proc.
22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI).
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MCMH Algorithm

Let θt denote the current draw of θ, and let y
(t)
1 , . . . , y

(t)
m denote the auxiliary samples

simulated from the distribution f (y |θt), which can be drawn by either a MCMC
algorithm or an automated rejection sampling algorithm.

1. Draw ϑ from some proposal distribution Q(θt , ϑ).

2. Estimate the normalizing constant ratio R(θt , ϑ) = κ(ϑ)/κ(θt) by

R̂m(θt , yt , ϑ) =
1

m

m∑

i=1

g(y
(t)
i , ϑ)

g(y
(t)
i , θt)

,

where g(y , θ) = exp{−U(y , θ)} = Cḟ (y |θ), and yt = (y
(t)
1 , . . . , y

(t)
m ) denotes

the collection of auxiliary samples.

Liang, F. and Jin, I.H. (2010) A Monte Carlo Metropolis-Hastings Algorithm
for Sampling from Distributions with Intractable Normalizing Constants.
Submitted Manuscript.
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MCMH Algorithm (continue)

3. Calculate the Monte Carlo MH ratio

r̃m(θt , yt , ϑ) =
1

R̂m(θt , yt , ϑ)

g(x , ϑ)π(ϑ)

g(x , θt)π(θt)

Q(ϑ, θt)

Q(θt , ϑ)
,

where π(θ) denotes the prior distribution imposed on θ.

4. Set θt+1 = ϑ with probability α̃(θt , yt , ϑ) = min{1, r̃m(θt , yt , ϑ)}, and set
θt+1 = θt with the remaining probability.

5. If the proposal is rejected in step 4, set yt+1 = yt . Otherwise, draw samples

yt+1 = (y
(t+1)
1 , . . ., y

(t+1)
m ) from f (y |θt+1) using either a MCMC algorithm or an

automated rejection sampling algorithm.
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AMCMH Algorithm

AMCMH: Algorithm Setting

I θt : the current draw of θ;

I yt = (y
(t)
1 , . . . , y

(t)
m ): a collection of m auxiliary samples simulated from the

distribution f (y |θt), which can be drawn by either a MCMC algorithm or an
automated rejection sampling algorithm;

I St : the set of all distinct samples of θ drawn by iteration t.

Liang, F. and Song, Q.(2010) An adaptive Monte Carlo MH algorithm for
Bayesian inference of spatial autologistic models. Submitted Manuscript.
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AMCMH Algorithm

AMCMH: Algorithm

1. Draw ϑ from some proposal distribution Q(θt , ϑ).

2. Estimate the normalizing constant ratio R(θt , ϑ) = κ(θt)/κ(ϑ) by

R̂(θt , ϑ) =
1

m0 + m0
∑

θi∈St\{θt} I (‖ϑ− θi‖ ≤ η)




∑

θi∈St\{θt}

[
I (‖ϑ− θi‖ ≤ η)

m0∑

j=1

g(z
(i)
j , θt)

g(z
(i)
j , ϑ)

]
+

m0∑

j=1

g(z
(t)
j , θt)

g(z
(t)
j , ϑ)



 ,

(4)

where η is a pre-specified threshold value which defines a neighborhood region

of ϑ, g(z, θ) = exp{−U(z, θ)}, and (z
(i)
1 , . . . , z

(i)
m0

) denotes a subset of

importance samples drawn from the set yi = (y
(i)
1 , . . . , y

(i)
m ) with each being

drawn with a probability proportional to g(z, ϑ)/g(z, θi ).
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AMCMH Algorithm

AMCMH: Algorithm (continue)

3. Calculate the Monte Carlo MH ratio

r̃(θt , ϑ) = R̂(θt , ϑ)
g(x , ϑ)π(ϑ)

g(x , θt)π(θt)

Q(ϑ, θt)

Q(θt , ϑ)
.

Set θt+1 = ϑ with probability α̃(θt , ϑ) = 1 ∧ r̃(θt , ϑ), and set θt+1 = θt with the
remaining probability, where a ∧ b = min(a, b).

4. If the proposal is accepted in step 4, set St+1 = St ∪ {ϑ} and draw samples

yt+1 = (y
(t+1)
1 , . . ., y

(t+1)
m ) from f (y |θt+1) using either a MCMC algorithm or an

automated rejection sampling algorithm. Otherwise, set θt+1 = θt , yt+1 = yt ,
and St+1 = St .
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AMCMH Algorithm

AMCMH: On generation of auxiliary samples

AMCMH requires the auxiliary samples to be drawn at equilibrium, if a MCMC
algorithm is used for generating the auxiliary samples.

To ensure this requirement to be satisfied, the initial auxiliary sample can be
generated at each iteration through an importance resampling procedure; that is, set

y
(t+1)
0 = y

(t)
i with a probability proportional to its importance weight

wi = g(y
(t)
i , θt+1)/g(y

(t)
i , θt). (5)

As long as y
(t+1)
0 follows correctly from f (y |θt+1), this procedure ensures that all

samples, yt+1, yt+2, yt+3, . . ., drawn in the followed iterations will follow correctly

from the respective distributions, provided that θ does not change dramatically at

each iteration.
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Convergence of MCMC with adaptive target distribution
Convergence of AMCMH Algorithm

Ergodicity

Theorem 1. Consider an adaptive MCMC algorithm with transition kernels Pγk ,
k = 0, 1, 2, . . ., on the state space (X ,F). The adaptive algorithm is ergodic if the
following conditions are satisfied:

(a) (Stationarity) There exists a stationary distribution πγk (·) for each transition
kernel Pγk .

(b) (Asymptotic Simultaneous Uniform Ergodicity) For any ε > 0, there exists
K > 0 and N > 0 such that

‖Pn
γk

(x , ·)− π(·)‖ 6 ε, for all x ∈ X and k > K , n > N.

(c) (Diminishing Adaptation) limk→0 Dk = 0 in probability, where

Dk = sup
x∈X

‖PΓk+1
(x , ·)− PΓk

(x , ·)‖

is a Gk+1-measurable random variable (depending on the random values Γk and
Γk+1).
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Weal Law of Large Numbers

Theorem 2. Consider an adaptive MCMC algorithm with transition kernels Pγk ,
k = 0, 1, 2, . . ., on the state space (X ,F). Suppose that conditions (a), (b) and (c) of
Theorem 1 hold and that all kernels Pγk converge uniformly to their respective
stationary distributions. Let g(·) be a bounded measurable function. Then, for any
starting values x ∈ X and γ ∈ Y, conditional on X0 = x and Γ0 = γ, we have

∑n
i=1 g(Xi )

n
→ π(g)

in probability as n →∞, where π(g) =
∫
X g(x)π(dx).

Theorems 1 and 2 can be proved using the coupling approach in a similar way to

Roberts and Rosenthal (2007) J. Appl. Prob.
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Convergence of MCMC with adaptive target distribution
Convergence of AMCMH Algorithm

Assumptions

Consider the MH transition kernel

P(θ, ϑ) = α(θ, ϑ)Q(θ, ϑ) + I(θ ∈ dϑ)[1−
∫

Θ
α(θ, ϑ)Q(θ, ϑ)dϑ],

which is induced by the proposal Q(·, ·) under the assumption that R(θ, ϑ) is
analytically available.

(A1) P is irreducible and aperiodic, and admits the posterior π(θ|x) as its stationary
distribution.

(A2) There exists a large constant M > 1 such that

sup
(θ,ϑ)∈Θ×Θ

f (x |θ)π(θ)

Q(ϑ, θ)
≤ M < ∞.

(A3) Both the prior π(θ) and the unnormalized likelihood function
g(x , θ) = exp(−U(x , θ)) are bounded away from 0 and ∞ for every θ ∈ Θ.
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Convergence of MCMC with adaptive target distribution
Convergence of AMCMH Algorithm

Stationarity of AMCMH Kernels

Theorem 3. Assume conditions (A1), (A2) and (A3) hold, then there exists a

stationary distribution for each kernel Pγt .
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Convergence of MCMC with adaptive target distribution
Convergence of AMCMH Algorithm

Asymptotic simultaneous uniform ergodicity

Theorem 4. Consider the adaptive Markov chain induced by the AMCMH algorithm.

If the conditions (A1), (A2) and (A3) are satisfied and the drift function of P satisfies

supθ∈Θ V (θ) < ∞, then the kernels {Pγt } are asymptotic simultaneous uniform

ergodic.
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Convergence of MCMC with adaptive target distribution
Convergence of AMCMH Algorithm

Diminishing adaptation condition

Theorem 5. Consider the adaptive Markov chain induced by the AMCMH algorithm.

If the conditions (A1), (A2) and (A3) are satisfied, then the transition kernels {Pγt }
satisfy the diminishing adaptation condition.
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Convergence of MCMC with adaptive target distribution
Convergence of AMCMH Algorithm

Convergence of AMCMH Algorithm

Theorem 6. Consider the AMCMH algorithm. If Conditions (A1), (A2) and (A3) are
satisfied, then the following results hold:

(i) The algorithm is ergodic with respect to the posterior distribution π(θ|x).

(ii) For a bounded measurable function g(·), as n →∞,

∑n
i=1 g(θi )

n
−→

∫
g(θ)π(θ|x)dθ in probability.
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The Model
US Cancer Mortality Data
Simulation Studies

Spatial Autologistic Model

Let x = {xi : i ∈ D} denote the observed binary data, where D is the set of indices of
the spins. Let n(i) denote the set of neighbors of spin i . The likelihood function of the
model is given by

f (x|α, β) =
1

Z(α, β)
exp



α

∑

i∈D

xi +
β

2

∑

i∈D

xi

( ∑

j∈n(i)

xj

)


 , (α, β) ∈ Θ, (6)

where the parameter α determines the overall proportion of xi = +1, the parameter β
determines the intensity of interaction between xi and its neighbors. An exact
evaluation of Z(α, β) is prohibited even for a moderate system.
For Bayesian analysis, a uniform prior

(α, β) ∈ Θ = [−1, 1]× [0, 1]

is assumed for the model.
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US Cancer Mortality Data
Simulation Studies
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Figure: US cancer mortality data. Left: The mortality map of liver and gallbladder
cancers (including bile ducts) for white males during the decade 1950-1959. Black
squares denote counties of high cancer mortality rate, and white squares denote
counties of low cancer mortality rate. Right: Fitted cancer mortality rates by the
spatial autologistic model with the parameters being replaced by its AMCMH
estimates.
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The Model
US Cancer Mortality Data
Simulation Studies

Table: Computational results for the U.S. cancer mortality data. CPU:
The CPU time cost by a single run on a 3.0GHz personal computer. The
numbers in the parentheses denote the standard error of the estimates.

Algorithm Setting α̂ β̂ CPU(s)
m = 20 −0.3017 (7.4× 10−4) 0.1232 (4.0× 10−4) 5.0

AMCMH m = 50 −0.3019 (7.4× 10−4) 0.1228 (3.8× 10−4) 10.2
m = 100 −0.3017 (6.6× 10−4) 0.1228 (3.6× 10−4) 22.5

Exchange — −0.3013 (7.7× 10−4) 0.1231 (4.6× 10−4) 13.1
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Simulation Studies
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Figure: Average number of samples used in estimation of the normalizing constant
ratio versus iterations. The average is taken over 50 runs with m = 50 and m0 = 20.

Faming Liang An Adaptive Monte Carlo Metropolis-Hastings Algorithm for Bayesian inference of spatial autologistic models



Literature Review
Adaptive Monte Carlo Metropolis-Hastings Algorithm

Convergence of AMCMH
Bayesian Analysis for Spatial Autologistic Models

Discussion

The Model
US Cancer Mortality Data
Simulation Studies

Table: Results for the simulated U.S. cancer mortality data.

AMCMH Exchange algorithm

(α, β) α̂ β̂ CPU(s) α̂ β̂ CPU(s)
−.0037 .1003 −.0042 .1013

(0,0.1)
(.0024) (.0018)

10.9
(.0025) (.0019)

13.2

−.0025 .2008 −.0025 .2008
(0,0.2)

(.0021) (.0018)
9.4

(.0020) (.0019)
52.3

−.0007 .2977 −.0006 .2973
(0,0.3)

(.0014) (.0018)
9.5

(.0014) (.0017)
89.8

.0006 .3965 .0002 .3980
(0,0.4)

(.0011) (.0016)
16.4

(.0006) (.0011)
1180.2

.1035 .0986 .1035 .0987
(0.1,0.1)

(.0025) (.0022)
10.8

(.0026) (.0022)
12.6

.3014 .3005 .3034 .2999
(0.3,0.3)

(.0099) (.0044)
10.6

(.0099) (.0044)
38.2

.5085 .5016 — —
(0.5,0.5)

(.0224) (.0080)
17.3

— —
—
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Discussion

I AMCMH is an adaptive version of the MH algorithm. At each iteration, it
replaces the unknown normalizing constant ratio R(θt , ϑ) by a Monte Carlo
estimate calculated using all auxiliary samples generated so far in the simulation.
Although it violates the detailed balance condition, it is still ergodic with respect
to the desired target distribution and the weak law of large numbers still holds
for bounded measurable functions. AMCMH represents a new type of adaptive
MCMC algorithms for which the stationary distribution changes from iteration
to iteration.
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Discussion

I Unlike the auxiliary variable MCMC algorithms, AMCMH avoids the
requirement for perfect sampling, and thus can be applied to many statistical
models for which perfect sampling is not available or very expensive.

I For estimation of the normalizing constant ratio, only the simple importance
sampling method is presented here. Other normalizing constant ratio estimators,
such as ratio importance sampling (Chen and Shao, 1997) and bridge sampling
(Meng and Wong, 1996), should also work well for AMCMH, although they are
only asymptotically unbiased. In particular, the ratio importance sampling
estimator relies on the samples generated from a third distribution, other than
f (x |θt) and f (x |ϑ), and can fit well into the framework of AMCMH. The past
samples that are close to both θt and ϑ can be selected for construction of the
“third” distributions.
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