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Outline of the talk

1. Algorithm design

» Adaptive Markov chain: a single chain whose kernel is gradually
modified
> Interacting Markov chains: multiple chains with interactions

2. Some numerical examples

3. Convergence of the algorithms



An elementary example: the Adaptive Metropolis
Algorithm

> Yii1 = X + Zp1 where Zy 1 ~iid. ¢, where ¢ is symmetric (i.e.
q(z) = 4(—=))
m(y)

a(x,y) = 1/\@

» Finding a proper scale is thus mandatory ! but it is not always
obvious to say what small or large mean for a given distribution 7
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Optimal Scaling of the RWM

» A useful idea to understand MCMC is to consider some sort of limits.

» high-dimensional limit, i.e. the state space X = R’ where we let
the dimension T — oo, are in general useful.

» Under appropriate assumptions, each coordinate of the Markov chain
{Xl(;;) !, converges to a diffusion limit.

» The choice of an appropriate scale then translates into the
optimization of the limiting diffusion speed.



Diffusive Limits

> Stationary distribution: (™) (z1,...,z7) =[], f(z;) on RT
(T — o0)

» Metropolis proposal: qé,T)(azl,...,a:T) ~ N (0, (6%/T)Ir)... with
variance decreasing as 1/7.

» Interpolated process: Zt(T) — X[(tj;)] ,--- We consider a single

component and we speed up the time scale by 7.



Diffusive Limits

7Z\T) =, 7 where Z solves the Langevin SDE with limiting speed v(f)
dZ; = v/2(0)dB; + (1/2)v(0)V log f(Z,)dt
v(0) = 6>7°)(0)

where,
() (9) = lim 77 ()

T'— 00

is the limit of the acceptance rate in stationarity.



Diffusion speed optimization

> The limiting speed v(6) = #27(°)(#) may be rewritten as a function
of the mean acceptance rate in stationarity

v(6) ox w [T(OO)(H)] w:T = 1 H1/2) .

» The speed is maximized if the scale is chosen so that 7(>) [6,],
where T is the maximum of w.

» The optimum value of the acceptance rate may be shown to be
T~ 0.234...
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Pros and Cons of diffusion limits

» Empirically this 0.234 rule has been observed to be approximately
right much more generally.

» One major disadvantage of the diffusion limit work is its reliance on
asymptotics in the dimensionality of the problem... and the target
distribution should be simple enough to obtain interpretable limiting
results.

» Extensions and generalisations of this result can be found in (Roberts
and Rosenthal, 2001) and (Bedard, 2007), (Pillai, Stuart, 2009),
introducing some forms of dependence between the components

» Other algorithms can benefit from this analysis: multiple try
Metropolis and Delayed Rejection algorithms have been analysed

in (Bedard, Douc, Moulines, 2010a & 2010b)... conclusions are non
trivial and suggest way to design adaptive algorithms.



How to control the Acceptance Rate

» Objective: Finding the scale ¢ therefore amounts to solve

e A O R

» Under appropriate assumptions, 0 — h(6) is monotone with
limg_,o+ h(0) =1 —7 >0 and limy_,, h(0) = —7 < 0... But h(0)
cannot be computed explicitly !

> Suggest to use a stochastic approximation procedure to adapt the
scale 6 (see Andrieu, Robert, (2001), Vihola (2010)).




Adaptive Scaling Metropolis Algorithm

» Proposition & Accept/Reject

Vi1 = Xp + 0N (0,1)

D% B Yi.1 with prob. Oé(Xk,Yk+1)
e X otherwise

» Update the scaling factor

log(Ox41) = log(Ok) + Ye41 {( Xk, Yiy1) — T}

where limy oo v = 0 and >~ v, = o0,

» A better form of this algorithm is discussed in ?
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Adaptive MCMC with multidimensional scaling (Haario,
Saksman, Tamminen, 1999, 2001), Vihola (2010)

1. Simulate

B Y11 with proba. Oé(Xk,Yk+1)
B X otherwise

2. Update the target mean and covariance

prr1 = ke + Yer1 (Xpgp1 — pi)
Trt1 = Cr 4 Yrgr {(Xngr — pr) (X1 — pu) " — T}

3. Control the global scale of the proposal

log(ak_l_l) = log(ok) + Ve+1 (Oé(Xka Ykz+1) o 7_')
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ultidimensional Scaling
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Figure: d =12, m ~ N(0,T), cond(T") = 100, ¢ ~ N(0, (2.32%/d) I
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Tempering

» MCMC generally run into troubles when the distribution is
multimodal.

» Discovering modes is to finding a global minimum in nonlinear
optimisation. One solution to that problem was to use simulated
annealing by introducing a temperature parameter.

» The analogous process applied to drawing samples from a target
probability distribution is often referred to as tempering: instead of
cooling down to make the distribution sharper and sharper, we
rather heating up the distribution to make it flatter and flatter...
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Parallel tempering

» In parallel tempering algorithm by Geyer (1991) is to run parallel
Metropolis sampling at different temperatures
Ty > T > --- > T =1, with target distributions {Wl/Tk}le.

» At intervals, a pair of adjacent level is chosen and a proposal made
to swap their states. If the swap is accepted then these states are
interchanged.

» The acceptance probability for the swap between the state at
temperature Ty, _1 and T}, (k € {2,..., K}) is computed to ensure
that the joint states of all the parallel chains is reversible with
respect to the tensor product 7/"* ® - .- @ 71/Tx of the heated up
probability :

7T1/T;€_1 (:E(k))ﬁl/T’“ (x(k—1)>

al/Tk-1 (aj(’f—l)) w1/ Tk (le(k)) .

QL (:U(k_l),a:(k)) =1A
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Parallel tempering

» This swap allows for an exchange of information across the
population of parallel simulations.

» In the higher temperature simulations, radically different
configurations can arise.

» By making exchanges, we can capture and improve configurations by
putting them into lower temperature simulations.

» Drawback: The temperature levels should be close enough to
achieve a significant acceptance probability for a swap.
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Interacting Tempering

» The Interacting Tempering Algorithm (introduced by Kou, Zhou,
Wong, 2008) exploits the parallel tempering idea: the algorithm runs
several chains at different temperatures.

» The idea is to replace an instantaneous swap by an interaction
with the whole past of a neighboring process.

» ldea: At time n, find in the past samples of the chain
Xik_l) € {Xék_l), e ,quk_l)} run at temperature T),_; a state
such that the probability of accepting the move

1Ty s (Xik_”) /Ty, (ng)) '

is large enough.



Interacting Tempering (at temperature T;)

> a transition kernel P(¥) with stationary distribution 71/ 7%

ml/T Pk) = 71/Tk (typically, a MH algorithm run with the target
distribution 71/7k).

» a probability of interaction € € (0, 1)
Iteration n: with probability (1 — €) draw X,,Sﬁ)l ~ P() (Xﬁ,k), )

PE (X, 4) = (1 - PFI(XF), 4) + -



Interacting Tempering
with probability e,

n

> select a state in X € {X* V1" with probability

n £=0
X, x50
{g( L ) (=0

» accept the proposal with probability an,k(quk),Xik_l))

Py (69, 4) = (1= PO, Ayre { [ 00D (@ann(XP,)
A
FLAD) [0 @) 11— ans(XE. 0}

where Hf,(zk_l)(dy) = n#“ > =10y @-1(dy) and
L

9(7,y) ! T (y)m /T () )

A k(2:9) = [ 0571 (dy)g(x, v) <1A mt/ Tt (y) 7t/ ()
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An example

1. Mixture of Gaussians: 4 components in dimension 10.

2. Dimension: d = 10 (only the first two components are shown)
Interactions: 5 %

3. Temperatures: 50,40,30,25,20,15,10,5,2.5,1
4. 50 Energy rings (adapted from the empirical quantiles)

5. Basic Kernel: random walk Metropolis with covariance (4/d) * 1
(optimally adapted to individual components).



Interactions: 0.001 %

Target density : mixture of 10-dim Ga
T T
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Target density at temperature 50
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Interactions: 0.001 %

Target density : mixture of 10-dim Gaussian
T T

.

Target density at temperature 5
T T T
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Interactions: 5 %

Target density : mixture of 10-dim Gaussian Target density at temperature 50
T T T T 50 T T T T

“10F
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Interactions: 5 %

Target density : mixture of 10-dim Gaussian
T T
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Interactions: 20 %

Target density : mixture of 10-dim Gaussian
T T

“10F
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Interactions: 20 %

Target density : mixture of 10-dim Gaussian
T T

Target density at temperature 5
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Definitions and General Assumptions

» Let (O,7) be a measurable space and (X, X') be a general state
space.

» Let (Py,0 € ©) be a collection of Markov transition kernels indexed
by # € ©, which can be either finite or infinite dimensional (e.g.
an empirical distribution).

» For each 6 € O, Py admits a unique stationary distribution 7y:
T — 7T9P9.

» Consider a X x ©-valued process {(X,,,0,),n > 0} on a filtered
probability space (2, F, F,,P) such that, for each n, (X,,,0,,) is
Frn-measurable and for any bounded measurable function f:

E[f(Xnt1) [ Fn] = P, f(Xn) -



Problems

» Problem: Find conditions such that :

1. Ergodicity: lim,_, o E [f(X,)] = 7(f) where 7 is the target
distribution.

2. Strong Law of Large Numbers: lim, oo n™ ' > 7, f(Xk) = 7(f)
P-a.s.

3. Central Limit Theorems for additive functionals:
n 23 {F(Xk) = 7(f)} =a N(0,0°) [not today ]

» Problem: {X} is not a Markov Chain.
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A quick survey of the literature: Adaptive MCMC

| hope that | did not have forgotten anyone in the room !

1. Haario, Saksman, Tamminen (1999), (2001): analysis of the
Adaptive Metropolis under some strong assumptions (use mixingales
approach)

2. Andrieu, Moulines (2006): analysis of a general class of adaptive
algorithms where the parameter is adapted using Stochastic
Approximation

3. Roberts and Rosenthal (2007): more general algorithms
(diminishing adaptations and the containment conditions).
Some of these conditions are found to be close to necessary; see Bai,

Roberts, Rosenthal (2010)

4. Atchadé and Fort (2009): adaptation to sub-geometric convergence

5. Saksman & Vihola (2010): a version of Adaptive Metropolis without
strange looking conditions !

The level-0 asymptotic theory is almost complete... the challenge is now
to develop some finite horizon results, hopefully showing that adaptation
is useful even if the number of iterations is finite.
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A quick survey of the literature: Interacting MCMC

1. Del Moral and Miclo (2004): self-interacting chains under uniform
ergodicity conditions (a curiosity)
2. Andrieu, Del Moral, Doucet, Jasra (2006,2007,2010): law of large

numbers for a "two-level” process under geometric ergodicity
conditions (the proof if Kou, Zhou, Wong (2006) is flawed)

3. Del Moral and Doucet (2009), Bercu, Del Moral and Doucet (2009):
general interacting algorithms, for uniformly ergodic chain. Some
conditions are likely to be very hard to check (and are not satisfied
for " classical” algorithms)

4. Atchade (2009): an attempt to solve the general problem. Some
gaps in the proof.



Error decomposition

E[f(Xa)] - 7(f) =E [ f(X0) = Py f(Xnr,)]

+E| Py f(Xnr,) =0, (F)| +E [0, (£)] = 7(f)



Error decomposition

E[f(Xa)] = 7(f) =E [ f(X0) = Py f(Xnr,)]

+E| Py f(Xnr,) =70, (F)| +E [0, (£)] = 7(f)

— [A] (Ergodicity of the transition kernels)
» There exists mg s.t. mgFPy = g

» for any € > 0, there exists a non-decreasing positive sequence
{rn,n > 0} such that limsup, .., 7./n =0 and

limsupE H Pg:_r (Xp—p,,) — mg

n— o0

<«

n—Tn

TV



Error decomposition

E[f(Xa)] = 7(f) = B | f(Xn) = Py

YE B f(Xar,) = 7o, (D] +E [mo, ., (/)] = =()

n—rn

— [B] (Diminishing adaptation)
For any € > 0,

Thn—1

tim > B [sup [P, (o) = Po s (59| =0
j=0



Error decomposition

E[f(Xa)] = 7(f) =E [ f(Xn) = Py f(Xnr,)]
f(Xnera) = 7o, (D] +E [0, (£)] = ()

n—Trn

+E |y

< [C] Convergence of the invariant distributions
There exist m and a bounded non-negative function f s.t.

hmn o, (f) — ﬂ-(f)



Result [FORT ET AL. 2010]

Assume (A)-(B)-(C). Then, lim,, E [f(X,)] = 7 (f).

Condition (A) is easily checked if the kernel is geometrically ergodic

PV < XV 4+ bg ,

Pg(fc, ) 2 59 1/9(-) H{VSCG}(CC) Co déf 2[)9(1 — )\9)_1 —1.

In such case
| Pg* (z, ) — mollyy < Co py V()

and there exists universal constants C' and 7 s.t.

Lo CoVv (1—pg) < C{bg Vi, v (1—xg) 1) .
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Comparison with [Roberts & Rosenthal, 2007]

1. Weaken the containment condition and the diminishing
adaptation condition of [Roberts & Rosenthal, 2007]. For example
(A) cover situations where the transition kernels Py are geometrically
ergodic but not necessarily uniformly-in-6.

sup |Py' f(x) —mo(f)| < Cy py V()
ISV

Nevertheless, it is required to have an explicit control of ergodicity s.t.
Cy,. V (1 — pg, )~ ! does not “explode too quickly”.

2. mg can depend upon 6 provided we are able to prove that 7y (f)
converges to w(f).

3. the analysis of the unconstrained adaptive MCMC (for which the
containment condition seems to be difficult to check directly) and of a
simplified version of the interacting tempering is given in (Fort, et al.,

2010)



Sketch of the proof

mn

Y S () = Y ) — o, ()} Zml ) =l
k=1

k=1

For the second term, required to prove that my_ (f) 22y 7(f)



Sketch of the proof

n

a3 FX) () =0t S () — o (D)} Zml
k=1

k=1

For the first term, replace f — g, (f) by fo, . — Po, . fo. . where f
is the solution of the Poisson Equation

f—mo(f)=fo—Pafo.



Decomposition of the error

nt Y {f(Xk) =, ()}
k=1
n—1
— % Z{fHk—l(Xk) - P9k—1f9k—1(Xk’—1)} + szl) + R7(12)
k=1

where Rf,(zl) and Rff) are remainder terms

n—1
def 1 A 5
R?(zl) — n Z{Pekak (X&) = Po,_y for o (Xk)}
k=1

1 "
P90f90 (XO) T

n

1

n

def A
R’I(’L2) — Pen—lfen—l(Xn_l) :



Decomposition of the error

n

n=t Y {F(Xk) =, ()}

k=1

1<, ; N
B n Z{ka—l(Xk) _ Pekz—lfek—l(Xk_l)} + ngzl) + Rg)
< [B] Chow's Martingale Cvge Theorem: for some o > 1,

Z [‘f@k 1 Xk) Py, _ 1f9k, 1(Xk: 1 ‘Fk 1} < 400 a.s.



Decomposition of the error

n~t Y {F(Xe) = 7o ()}
k=1

n—1
1 A .
B n Z{fé’k—l(Xk) — P9k—1f9k—1(Xk—1)} + ngzl) + R7(z2)
k=1

» RV [C] Strengthened version of diminishing adaptation

> Rff): < very weak conditions | (more or less, a consequence of the
other conditions).
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Theorem
A. (Ergodicity of the transition kernels) There exist Cy, pg € (0,1) s.t

1Po’ (2, -) — mallv < Co pg V()

B. (Martingale term) there exists o > 1

Zk_ L@k 2a ngVO‘(Xk) < +00 a.s.

with Lo = Cy V (1 — pg)_l.
C. (Strengthened diminishing adaptation)
’PQkf(x) — P, 1f(x)|

k~'Ly. V(Xk) sup sup — < o0 a.s.
2 ¢ z f,fI<V V(z)

D. (Convergence of the invariant distributions) for f s.t.
FI <V a€(0,1), m, (f) = n(f)

Then, n=1 Y1, f(Xy) == 7(f)
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Convergence of the stationary distribution

Theorem
A. (Ergodicity of the transition kernels)
B. X is Polish

C. (Uniform Feller condition) For any bounded continuous function f,
{Pyf,0 € O} is equicontinuous.

D. (Convergence of the transition kernels) for any x € X,
Pgn (:U, °)—>dP9* (ZE, ) a.s..

Then for any bounded continuous function f, g (f) == me_ (f).
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Convergence of the stationary distribution

Theorem (Extended Varadarajan Theorem)

Let (U,d) be a metric space equipped with its Borel o-field B(U). Let
(Q2, A,IP) be a probability space, i be a distribution on (U, B(U)) and
{K,,n >0} be a family of Markov transition kernels
K, : Q x B(U) — [0,1]. Assume that, for any f € Cy(U, d)
def .
Q7 9 {w e Q: limsup [Kn(w, ) — u(f)| = 0},

n—oo

Is a P-full set. Then

{w cQ:VfeCoU,d)  limsup|Knw, f) — u(f)| = o} |

n— oo

Is a P-full set.




Application to the convergence of adaptive and interacting
MCMC algorithms

Ergodicity criteria: checked in practice by
» drift inequality PV < XV + by
» minorization condition Py(x,-) > dg vo(-)1e, (x)
» conditions on the decay of the rate £ s.t.
lim sup,, £(n) (be,, V 59_n1 V(1—=X,) ) <+oo



Application to the convergence of adaptive and interacting
MCMC algorithms

Ergodicity criteria: checked in practice by
» drift inequality PV < XV + by
» minorization condition Py(x,-) > dg vo(-)1e, (x)
» conditions on the decay of the rate £ s.t.
lim sup,, £(n) (be,, V 59_n1 V(1—=X,) ) <+oo

Diminishing adaptation: checked in practice by

distance(Py, Py) < C distance(6, 6’) for some “distance”



Application to the convergence of adaptive and interacting
MCMC algorithms

Ergodicity criteria: checked in practice by
» drift inequality PV < XV + by
» minorization condition Py(x,-) > dg vo(-)1e, (x)
» conditions on the decay of the rate £ s.t.
lim sup,, £(n) (be,, V 59_n1 V(1—=X,) ) <+oo

Diminishing adaptation: checked in practice by

distance(Py, Py) < C distance(6, 6’) for some “distance”

Convergence of {7y, (f),n > 0} when 7y # 7: based on the convergence
of {0,,n >0}
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Adaptive MCMC

» the target density 7 is lighter than exponential

» the eigenvalues of the covariance matrix of the proposal is lower
bounded by x > 0 (loading factor).

1. Ergodicity: lim, supy s <1 E f(X,)] =7(f) . seealso (Baiet

al., 2010)
2. Strong law of large numbers: for any function f such that
f(x)| <7 *%(z), s € (0,1). most of the arguments are adapted

from (Saksman & Vihola, 2009)!, used as a stress test !
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Convergence of the Interacting Tempering Algorithm

» target density 7 is lighter than exponential

» Any number of stages, no restriction on the probability of swap
e € (0,1), the temperature schedules, etc..

» the "local” P is a RWHM algorithm with Gaussian proposal
distribution

1. Ergodicity: lim, E[f(X,)] =n(f) for any bounded functions

f.
2. Strong law of large numbers: for any continuous function f such
that |f(x)| < 7 %(x), s € (0,1/T%). extensions of the works by

(Atchadé, 2007), (Andrieu et al. 2009)

Improved versions of the algorithms (with adaptive energy rings) have
also been considered.



