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Overview of talk

Mixing times and finite time convergence of adaptive MCMC.

Combining adaptive strategies.

Some cautionary notes about MIS kernels.
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Adaptive MCMC

Key ideas:

Many ways of “adapting” an MCMC algorithm based on
sample path exist; many can be shown to satisfy LLNs.

Purpose of adaptation is to improve rate of convergence.

Convergence of MC estimators involves both bias and
variance.

Different adaptation strategies can be understood as
improving one or the other.

Can obtain improved algorithms by combining strategies of
different types.
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High dimensional, multimodal target distributions

Molecular simulation
Bayesian variable selection/model selection
Mixture models
Non-linear physics-based models
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I. Adaptive Metropolis kernels

Two approaches developed by various authors

Adaptive random-walk proposals

qn+1(x , ·) = (1− α)N(x , Σ̂n) + αN(x ,Σ0)

e.g. Haario et al, Roberts & Rosenthal

Adaptive independence proposals (AMIS)

qn+1(x , ·) = g(·; θ̂n) θ̂n = θ(X1, . . . ,Xn)

e.g. Andrieu & Moulines, Ji & Schmidler, etc.
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Adaptive Metropolized independence sampler (AMIS)
[Ji and Schmidler, 2009]

Finite mixture proposal distribution:

q(x) = λN(x ; µ̃, Σ̃) + (1− λ)
M∑

m=1

wmN(x ;µm,Σm)

(see also Andrieu & Moulines 2005, others)

Point-mass mixture proposal for variable selection:

q(x) = (1− λ)
[
w0δ(x) +

M∑
m=1

wmN(µm,Σm)
]

+ λN(x ; µ̃, Σ̃)

Adapt parameters ψ = {wm, µm,Σm}M
m=1 to approximate π(x).
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Adaptive Metropolized independence sampler (AMIS)

Adaptive strategy: Minimize D [π(x) ‖ q(x ;ψ)] = Eπ
[
log π(x)

q(x ;ψ)

]
ψ∗ obtained as a root of derivative:

h(ψ) = −
∫

π(x)

q(x ;ψ)

∂

∂ψ
q(x ;ψ) = 0

Approximate h(ψ) by Monte Carlo integration:

h(ψ) ≈ 1

K

K∑
k=1

f (X (k), ψ) for f (x , ψ) =
∂

∂ψ
[log

π(x)

q(x ;ψ)
]

where X (k) ∼ π(x).
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ĥ(X (1:K);ψ): estimate of h(ψ) based on sample path X (1:k)

Stochastic Approximation algorithm [Robbins and Monro, 1951].

ψn+1 = ψn + rn+1(h(ψn) + ξn+1)

= ψn + rn+1 ĥ(X
(1:K)
n ;ψn)

{rn} decreasing step-sizes satisfying
∑

n rn = ∞ and
∑

n r2
n <∞

Resulting chain is non-Markovian, but can be shown to satisfy a
WLLN using results of [Roberts and Rosenthal, 2007]
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Example: Logistic regression

Bayesian logistic regression model,

yi | xi , β ∼ Bernoulli
(
g−1(xiβ)

)
β ∼ π0(β)

yi ∈ {0, 1}; g(u) logistic link

Simulated data set:

200 observations

r = 10 covariates

β1:10 = [−.01,−1.5, .15, .5,−.15,−.2,−.6, .25, 1.5,−.05]
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Bayesian logistic regression
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Figure: Autocorrelation of β1:10 under data-augmentation Gibbs sampler
[Holmes and Held, 2006] (blue), and adaptive MCMC algorithm (red).
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Equi-Energy Sampler [Kou et al., 2006]

Constructs I processes X (i) with tempered target densities
π(i) ∝ πβi for inverse temperatures 1 = β1 > . . . > βI ≥ 0.
(Also truncation π(i) ∝ πβi ∧ ci )

For each i , bin sample history (X
(i)
0:n) according to energy.

Process X (i) occasionally proposes to move to a state previously
visited by X (i+1) lying in same energy bin.

These “equi-energy” moves can be non-local in the state space,
potentially enabling transitions between distinct modes of π.
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MRAM Processes

Let X (1), . . . ,X (I ) discrete time stochastic processes on X .

So X (i) = X
(i)
0 ,X

(i)
1 , . . .

Generated by time-inhomogeneous sequences of transition kernels:

Ki ,n = αTi + (1− α)Ri ,n

with α ∈ [0, 1], Ti an ergodic time-homogeneous Markov
π(i)-reversible transition kernel, and Ri ,n is a resampling kernel
with proposal:

Qi ,n(X
(i)
n−1, y) =

I∑
i ′=1

n−1∑
j=0

wi ′jδ(y − X
(i ′)
j )

(Proposes new state from the set of previous samples X
(1:I )
0:n−1.)
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MRAM Algorithms

Mulitchain resampling adaptive Metropolis (MRAM):

Equi-Energy Sampler

Importance-Resampling from the Past (Atchadé)

Gelfand-Sahu

Scott C. Schmidler Exploration Vs. Exploitation in Adaptive Monte Carlo Sampling



IAMC Processes

Let {Tθ}θ∈Θ(i) be a set of ergodic, π(i)-reversible Markov kernels.

Tθi,n time-inhomogeneous but π(i)-invariant transition kernels

θi ,n = gi (X
(1:I )
0:n−1)

Examples: Haario algorithm and similar variants; multi-chain
algorithm of Rosenthal et al.

Scott C. Schmidler Exploration Vs. Exploitation in Adaptive Monte Carlo Sampling



Convergence theorems

X1, . . . ,Xn no longer a Markov chain.

Under what conditions does f̂n = 1
n

∑n
i=1 f (Xi ) converge?

Haario et al 2001: WLLN, using “mixingales”

Andrieu & Robert (2001): SA interpretation of Haario
algorithm

Andrieu & Moulines (2005), Atchade&́ Rosenthal (2005):
generalizations to other algorithms (and a CLT)

Roberts & Rosenthal (2007): Simplified conditions, coupling
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Adaptive MCMC theory

Nearly all theory to date deals with ergodicity (LLN).
A few give conditions for CLTs (e.g Andrieu & Moulines (2005)).

This was needed and a major breakthrough IMO. But all
asymptotic theory.

Adaptation is only interesting if it improves rates!
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Efficiency of MCMC

Statistical Efficiency: var(f̂ )

Under reasonably weak conditions∗, for any function f with
varπ(f ) ≤ ∞, we obtain a CLT:

√
n(f̄n − µf ) → N(0, σ2

f̄n
)

for σ2
f̄n

= σ2
f (1 + 2

∑n
j=1(1−

j
n )ρj) and

ρj =
1

σ2
f

E
(
(f (X (n))− µf )(f (X (n+j))− µf )

)
lag-j autocorrelation.
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Efficiency revisited

Asymptotic efficiency:
Relies on CLT, asymptotic variance = integrated autocorrelation

Finite sample efficiency:
Convergence as well as autocorrelation

MSE(θ̂) = Bias2(θ̂) + Var(θ̂)

For multimodal targets, bias can dominate in MCMC.
For good adaptive MCMC algorithms, bias will dominate.
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MCMC Theory

Ergodicity: SLLN under usual conditions (φ-irred, aper,
π-invariant)

Geometric: ∃λ ∈ [0, 1) and M(x) <∞ (π − a.e.x ∈ X ) s.t.

‖µKn − π‖ ≤ M(x)λn

Requires minorization, drift conditions. Implies CLT.

Uniform: M(x) ≡ M

Rapid mixing: λ grows at most polynomially in d
(Note G.E. requires only λ∗ > 0; e.g.holds for any |X | <∞)

Quantitative: e.g. Rosenthal 1995
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Rapidly mixing Markov chains

Let (X (d),F (d), λ(d)) a sequence of measure spaces, and π(d)

densities wrt λ(d) for d ∈ N the problem size.

Mixing time

τε = sup
π0

min{n : ‖πn′ − π‖TV < ε ∀n′ ≥ n}.

where
‖πn − π‖TV = sup

A⊂X
|πn(A)− π(A)|

P is rapidly mixing if τε is bounded above by a polynomial in d .

P is torpidly mixing if τε is bounded below by an exponential in d .
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Rapidly mixing Markov chains

For X finite or compact, we have

A sequence of transition kernels P(d) is rapidly mixing if
Gap(P(d)) decreases at most polynomially in d .

P(d) is torpidly (or slowly) mixing if Gap(P(d)) decreases
exponentially in d .

Compare to geometric ergodicity, which requires only
Gap(P(d)) > 0. (true for any |X | <∞.)
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Spectral bounds for reversible Markov chains

Convergence bounds for Markov chains:

Spectral bounds (reversibilize if needed); or operator norm

E.g. conductance and canonical paths

Coupling (minorization/drift)

Adaptive algorithms aren’t Markov chains!

Produce non-Markovian, time-inhomogeneous, irreversible
stochastic processes.

How to obtain bounds?
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Bounding convergence of Adaptive MCMC processes

We obtain lower bounds on mixing times via the hitting time for
subsets A ⊂ X :

HA = min
i

H
(i)
A H

(i)
A = min{n : X

(i)
n ∈ A}

and involving the familiar conductance of a π-reversible Markov
kernel T :

ΦT = inf
A⊂X :

0<π(A)<1

ΦT (A) ΦT (A) =

∫
A π(dv)T (v ,Ac)

π(A)π(Ac)

ΦT (A) captures the probability of moving between A and Ac

ΦT quantifies the worst “bottleneck”.
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Hitting times and mixing times

Key idea:

Pr(HA ≤ n) ≤ π(A)− ε ⇒ ‖πn − π‖TV ≥ ε

⇒ τε > n

⇒ We can lower bound mixing times via bounds on hitting

times.
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Lower bounds on MRAM mixing

Theorem (SW09)

For any ε > 0 and any A ⊂ X such that 0 < π(i)(A) < 1 for all i ,
the mixing time τ∗ε of the MRAM satisfies:

τ∗ε ≥ (π(A)− ε)

[
cI max

i
γ(A, i)ΦTi

(A)

]−1

.

Here γ(A, i) = min{1, π(i)(A)/π(A)} is the persistence defined by
Woodard,Schmidler,Huber (2007).
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Single chain

Note appearance of the conductance:

Corollary

For any 0 < ε < 1/4, the mixing time τ∗ε of an adaptive sampler
based on T , with I = 1, satisfies:

τ∗ε ≥
1

4ΦT
.

Corollary

Slow mixing of the Markov chain with transition kernel T implies
slow mixing of any MRAM process based on T that has I = 1.
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Note also the similarity of the bound for MRAM processes:

τ∗ε ≥ (π(A)− ε)

[
cI max

i
γ(A, i)ΦTi

(A)

]−1

.

to the bound obtained by Woodard, Schmidler, Huber (2007) for
non-adaptive swapping processes:

τ∗ε ≥ 2−8 ln(2ε)−1

[
max

i
γ(A, i)ΦTi

(A)

]−1/2

.
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Normal mixtures

Mixtures of normals

π(z) =
1

2
NM(z ;−1M , σ

2
1IM) +

1

2
NM(z ; 1M , σ

2
2IM)

Theorem (WSH07a): Tempering is rapidly mixing for σ1 = σ2.
Theorem (WSH07b): Tempering is torpidly mixing for σ1 6= σ2.

Theorem (SW09): EES is torpidly mixing for σ1 6= σ2.
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IAMC Processes

Similar (hitting time) argument gives:

Theorem (SW09)

Haario and multi-chain samplers are torpidly mixing on
mixture-of-normals problem.
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Efficiency revisited

Asymptotic efficiency:
Relies on CLT, asymptotic variance = integrated autocorrelation

Finite sample efficiency:
Convergence as well as autocorrelation

MSE(θ̂) = Bias2(θ̂) + Var(θ̂)

⇒ MRAM and IAMC sampling can only improve autocorrelation
piece!
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Overview of talk

Mixing times and finite time convergence of adaptive MCMC.

Combining adaptive strategies.

Some cautionary notes about MIS kernels.
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Types of MCMC adaptation

Suggests considering alternative “adaptation” strategies.

I: IAMC (adaptive random walks, AMIS)

II MRAM (equi-energy)

(III) Modifying the stationary distribution

Wang-Landau, and generalizations (Atchade & Liu, Liang)
Multi-canonical
Metadynamics (Parisi et al)

Have received much interest in physics literature; recently adopted
for statistical problems. (Liang, Atchade & Liu).
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Generalized Wang-Landau (Atchade & Liu, 2009)

Partition state space X = X0 ∪ . . . ∪ Xk according to predefined
energy levels −∞ ≤ e0 < e1 < · · · < ek ≤ ∞.

Goal: Sample from π̃(x) =
∑k

i=1
π(x)
π(Xi )

1Xi
(x) uniform energy

Algorithm: Adaptively estimate π̂n(i) ≈ π(Xi ) by SA:
{γn} a sequence of decreasing positive numbers.

Initialize φ0(i) > 0 for i = 1, . . . , k, and π̂0(i) = φ0(i)P
j φ0(j)

(i) Sample Xn+1 ∼
∑k

i=1
π(x)
π̂n(i)

1Xi
(x) by MH.

(ii) Set φn+1(i) = φn(i)
(
1 + γan1{Xn+1∈Xi}

)
; π̂n+1(i) = φn+1(i)P

j φn+1(j)
.

(iii) If max
i

∣∣vκ,n+1(i)− 1
k

∣∣ ≤ c
k where vκ,n(i) = 1

n−κ

n∑
j=κ+1

1{Xj∈Xi}

then set κ = n + 1 and an+1 = an + 1, otherwise an+1 = an.
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Types of MCMC adaptation

These ways of adapting address fundamentally different problems:

I & II: Improve mixing of chain among regions of target
distribution already visited

Improves autocorrelation of chain

In general cannot help in exploring previously unseen regions

Call these Exploitation methods.

III: Tries to push chain away from points “like” those already seen.

Can help in finding new regions; improve mixing time.

May suffer from high autocorrelation.

Call these Exploration methods.
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Caveats

Note:

Not rigorous statement for all IAMC methods on all targets;
depends on form of kernel. But clear that method’s power is
essentially limited by these choices.

Some authors (Craiu et al, Heaton & Schmidler) use multiple
parallel chains to aid exploration in IAMC. Can help in
practice but ultimately limited by ability to initialize well.

No method will work for all problems - some are provably hard
(see e.g Schmidler & Woodard, in prep). Can hope for
improved behavior on practical problems.
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Hybrid adaptation strategies

Can we combine types to achieve best of both?
Yes but requires some care.

One approach: Mixture kernels

Kadapt = αKexploit + (1− α)Kexplore

Suffers problems in multimodal examples (Wiehe & Schmidler,
2010).

Alternative approach:

Run exploration chain independently in parallel, but use samples to
augment AMIS approximation.
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Exploration/Exploitation Algorithm (Wang & SS, 2010)

1 Run two chains in parallel: XWL and XAMIS+

2 Every Nc iterations, update the proposal distribution for
XAMIS+.

3 At iteration n = m ∗ Nc , let En be the energy ring of XAMIS+
n−1 .

Form KDE f̂ by adding the samples {XWL
1 , . . . ,XWL

n } to
those in En.

4 Propose XAMIS+
n from f̂c .

5 At other iterations, run the two chains independently.
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Improving on (generalized) Wang-Landau

But . . .

Problem 1: Performance of the WL algorithm depends heavily on a
good choice of the energy rings E0, . . . ,Ek : number, spacing,
max.

Recommended heuristics:
Estimate highest energy, lowest, form geometric progression.
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Example

Figure: Normal mixture with modes at (-5,-5) and (5,5)

(a) d = 4, fixed energy levels
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Example

Figure: Example 2, modes at (-5,-5) and (5,5)

(a) d = 4, fixed energy levelsScott C. Schmidler Exploration Vs. Exploitation in Adaptive Monte Carlo Sampling



Example
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(b) d = 4, fixed energy levels

Conductance argument yields provably slow mixing.
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Energy level adaptation scheme

Performance of the WL algorithm depends heavily on a good
choice of the energy rings E0, . . . ,Ek .

We introduce an adaptive scheme to make updating energy levels
fully automatic:

1 Initialize by a geometric progression:

e0 = inf
x

E (x) = 0, e1 = 1, e2 = re , . . . ,Ek−1 = rk−2
e ,Ek = ∞.

2 Every nsplit iterations: if any |log(φi )− log(φi+1)| > E , divide

the i-th energy ring by adding a new e∗i+1 = ei ×
√

ei+1

ei
, again

using geometric progression. Set log(φ∗i+1) = 0.
3 Also update the second largest ei ;

E ∗
k−1 =

E 2
k−1

Ek

Set log(φ∗k) = 0.
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Adaptive Energy Generalized Wang-Landau (AE-GWL)

Algorithm: Adaptively estimate π̂n(i) ≈ π(Xi ) by SA:
{γn} a sequence of decreasing positive numbers.

Initialize φ0(i) > 0 for i = 1, . . . , k, and π̂0(i) = φ0(i)P
j φ0(j)

(i) Sample Xn+1 ∼
∑k

i=1
π(x)
π̂n(i)

1Xi
(x) by MH.

(ii) Set φn+1(i) = φn(i)
(
1 + γan1{Xn+1∈Xi}

)
and

π̂n+1(i) = φn+1(i)P
j φn+1(j)

.

(iii) If max
i

∣∣vκ,n+1(i)− 1
k

∣∣ ≤ c
k where vκ,n(i) = 1

n−κ

n∑
j=κ+1

1{Xj∈Xi}

then set κ = n + 1 and an+1 = an + 1, otherwise an+1 = an.

(iv)∗ For every nsplit iterations, adaptively update E = {Ei}.
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Example

(c) d = 4, update internal energy levels
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Improving on (generalized) Wang-Landau

Problem 2: Wang-Landau for MC integration: converges in limit,
but can be slow. WL inefficient for MC integration.

Reweighting complicated due to WL process.

We use importance sampling:

1 Use all samples to find a kernel density estimate f̂ .

2 Importance resampling: compute importance weights
wi = h(xi )

f̂ (xi )
and resample x1, . . . , xm.

3 Form kernel density estimate π̂ from x1, . . . , xm.
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Importance sampling vs ergodic averaging
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Exploration/Exploitation Algorithm

1 Run two chains in parallel: XAE-WL and XAMIS+

2 Every Nc iterations, update the proposal distribution for
XAMIS+.

3 At iteration n = m ∗ Nc , let En be the energy ring of XAMIS+
n−1 .

Form KDE f̂ by adding the samples {XAE-WL
1 , . . . ,XAE-WL

n } to
those in En.

4 Propose XAMIS+
n from f̂c .

5 At other iterations, run the two chains independently.
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Example: Trimodal distribution in d = 2

π(x) =
1

3
N(x ; [−3,−3]T , I ) +

1

3
N(x ; [7, 7]T , I ) +

1

3
N(x ; [5,−5]T )
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(g)
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Example

Bimodal distribution in d = 3:

π(x) =
1

2
N(x ; [−7,−7,−7]T , I ) +

1

2
N(x ; [7, 7, 7]T , I )
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(i) AMIS
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Conclusions

Key ideas:

Many ways of “adapting” an MCMC algorithm based on
sample path exist; many can be shown to satisfy LLNs.

Purpose of adaptation is to improve rate of convergence.

Convergence of MC estimators involves both bias and
variance.

Different adaptation strategies can be understood as
improving one or the other.

Can obtain improved algorithms by combining strategies of
different types.
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