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The Gaussian random walk Metropolis algorithm I

◮ The starting point X1 ≡ x1 ∈ R
d is in the support, π(x1) > 0.

◮ The parameter Σ ∈ R
d×d is some symmetric and positive

definite matrix.

For n = 2, 3, . . ., set recursively

Yn = Xn−1 +Σ1/2Wn, where Wn ∼ N(0, I), and

Xn =

{

Yn, with probability α(Xn−1, Yn) and

Xn−1, otherwise.

The probability α(x, y) of accepting a proposal y at x is defined as

α(x, y) := min

{

1,
π(y)

π(x)

}

.
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The Gaussian random walk Metropolis algorithm II

◮ The variables (Xk)k≥1 form a Markov chain, with the
transition probability

P (Xn ∈ A | X1, . . . , Xn−1) = PΣ(Xn−1, A).

◮ Here, the proposal distribution is Gaussian and determined by
the covariance parameter Σ.

◮ How to choose Σ in practice?
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The effect of proposal covariance
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Figure: First 1000 samples of the Gaussian random walk Metropolis chain
in R

2. The black solid lines show the contours of the ‘banana-shaped’ π.
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Choosing proposal covariance

◮ There are some rules of thumb on choosing Σ:
◮ If the target distribution π has finite second moments, then Σ

should be proportional to the covariance of π.
◮ The acceptance rate should be around 44% (d = 1) and 23.4%

(d ≥ 2).
◮ (These rules are based on theoretical findings [e.g. Gelman,

Roberts, and Gilks, 1996, Roberts, Gelman, and Gilks, 1997,
Roberts and Rosenthal, 2001].)

◮ In practice:
◮ The ‘classical’ solution is to perform one or more ‘pilot runs’

and determine Σ based on these pilot runs.
◮ The ‘modern’ approach is to use adaptation. . .
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Adaptive Metropolis algorithm I

The AM algorithm [Haario, Saksman, and Tamminen, 2001]:

◮ Define X1 ≡ x1 ∈ R
d such that π(x1) > 0.

◮ Choose parameters t > 0 and ǫ ≥ 0.

For n = 2, 3, . . .

Yn = Xn−1 +Σ
1/2
n−1Wn, where Wn ∼ N(0, I), and

Xn =

{

Yn, with probability α(Xn−1, Yn) and

Xn−1, otherwise.

where Σn−1 := t2Cov(X1, . . . , Xn−1) + ǫI, and I ∈ R
d×d stands

for the identity matrix.
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Adaptive Metropolis algorithm II

Cov(· · · ) is some consistent covariance estimator (not necessarily
the standard sample covariance!).

◮ In what follows, consider the definition
Cov(X1, . . . , Xn) := Sn, where S1 ≡ s1 ∈ R

d×d is symmetric
and positive definite, and

Sn =
n− 1

n
Sn−1 +

1

n
(Xn −Xn−1)(Xn −Xn−1)

T

where Xn−1 stands for the average of X1, . . . , Xn−1.
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Example run of AM
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Figure: The first 10, 100 and 1000 samples of the AM algorithm started
with s1 = (0.01)2I, t = 2.38/

√
2 and ǫ = 0.
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Adaptive scaling Metropolis algorithm I

This algorithm, essentially proposed by [Gilks, Roberts, and Sahu,
1998, Andrieu and Robert, 2001], adjusts the size of the proposal
jumps, and tries to attain a given mean acceptance rate.

◮ Define X1 ≡ x1 ∈ R
d such that π(x1) > 0.

◮ Let Θ1 ≡ θ1 > 0.

◮ Define a sequence of positive adaptation step sizes (ηn)n≥2

decaying to zero.

◮ Define the desired mean acceptance rate α∗ ∈ (0, 1). (Usually
α∗ = 0.44 or α∗ = 0.234. . . )
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Adaptive scaling Metropolis algorithm II

For n = 2, 3, . . ., iterate

Yn = Xn−1 +Θn−1Wn, where Wn ∼ N(0, I), and

Xn =

{

Yn, with probability α(Xn−1, Yn) and

Xn−1, otherwise.

logΘn = logΘn−1 + ηn
[

α(Xn−1, Yn)− α∗].
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Example run of ASM
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Figure: The first 10, 100 and 1000 samples of the ASM algorithm started
with θ1 = 0.01 and using ηn = n−3/4.
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Robust adaptive Metropolis algorithm I

The RAM algorithm is a multidimensional ‘extension’ of the ASM
adaptation mechanism [Vihola, 2010b].

◮ Define X1 ≡ x1 ∈ R
d such that π(x1) > 0.

◮ Let S1 ≡ s1 ∈ R
d×d lower diagonal with positive diagonal

components.

◮ Define a sequence of positive adaptation step sizes (ηn)n≥2

decaying to zero.

◮ Define the desired mean acceptance rate α∗ ∈ (0, 1).
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Robust adaptive Metropolis algorithm II

For n = 2, 3, . . ., iterate

Yn = Xn−1 + Sn−1Wn, where Wn ∼ N(0, I), and

Xn =

{

Yn, with probability α(Xn−1, Yn) and

Xn−1, otherwise.

SnS
T
n = Sn−1

(

I + ηn
[

α(Xn−1, Yn)− α∗]WnW
T
n

‖Wn‖2
)

ST
n−1
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Robust adaptive Metropolis algorithm III

Figure: The RAM update with ηn
[

α(Xn−1, Yn)− α∗

]

= ±0.8, resp.
The ellipsoids defined by Sn−1S

T
n−1 (SnS

T
n ) are drawn in solid (dashed),

and the vector Sn−1Wn/‖Wn‖ as a dot.
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Example run of RAM
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Figure: The first 10, 100 and 1000 samples of the RAM algorithm started
with S1 = 0.01× I and using ηn = min{1, 2 · n−3/4}.
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Stochastic Approximation Framework I

◮ Andrieu and Robert [2001] observed the connection between
Robbins-Monro stochastic approximation and adaptive
MCMC.

◮ The algorithm has the following form (essentially)

Xn ∼ PΘn−1
(Xn−1, · )

Θn = Θn−1 + ηnH(Θn−1, Xn).

The recursion for (Θn)n≥1 can be considered as an attempt to
find a root of the mean field

h(θ) =

∫

Rd

H(θ, x)π(x)dx.
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Stochastic Approximation Framework II

◮ The AM, ASM and RAM algorithms can be formulated as
Robbins-Monro stochastic approximation.

◮ In the case of AM Θn = (Mn, Sn), and whenever π has
second moments, the mean field h has a unique root at
(mπ, sπ), the mean and covariance of π, respectively.

◮ In case of ASM and RAM, the root of h may be non-unique,
but there are no assumptions on the moments of π.
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Previous conditions on validity I

◮ What conditions are sufficient to guarantee that a law of large
numbers (LLN) holds: 1

n

∑n
k=1

f(Xk)
n→∞−−−→

∫

f(x)π(x)dx?

◮ Key conditions due to Roberts and Rosenthal [2007]:

Diminishing adaptation (DA) The effect of the adaptation
becomes smaller and smaller,

“‖Pθn − Pθn−1
‖ n→∞−−−→ 0.”

Containment (C) The kernels Pθn have all the time
sufficiently good mixing properties:

(

sup
n≥1

sup
k≥m

‖P k
θn(Xn, · )− π‖

)

m→∞−−−−→ 0.
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Previous conditions on validity II

◮ DA is usually easier to verify.

◮ Containment is often tightly related to the stability of the
process (θn)n≥1.

◮ Establishing containment (or stability) is often difficult before
showing that a LLN holds. . .

◮ Typical solution is to enforce containment.
◮ In the case of AM, ASM and RAM algorithms, this means that

the eigenvalues of Σn and θn are constrained to be within
[a, b] for some constants 0 < a ≤ b < ∞.
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Previous conditions on validity III

There are also other results in the literature on the ergodicity of
adaptive MCMC given conditions similar to DA and C.

◮ The original work on AM [Haario, Saksman, and Tamminen,
2001].

◮ Atchadé and Rosenthal [2005] analyse the ASM algorithm
following the original mixingale approach.

◮ The stochastic approximation formulation [Andrieu and
Robert, 2001] and the ergodicity results [Andrieu and
Moulines, 2006].

◮ The recent paper by Atchadé and Fort [2010] is based on a
resolvent kernel approach.
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New results I

◮ Strong belief (based on overwhelming empirical evidence) that
many algorithms (incl. AM, ASM and RAM) are intrinsically
stable.

=⇒ Containment is satisfied automatically and does not need not
be enforced.

◮ Key ideas in the new results:
◮ Containment is, in fact, not a necessary condition for LLN.
◮ That is, the ergodic properties of Pθn can become more and

more unfavourable, and still a LLN can hold.
◮ The adaptation mechanism may imply a ‘drift’ away from ‘bad

values’ of θ.
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General ergodicity result I

◮ Assume K1 ⊂ K2 ⊂ · · · ⊂ Θ are increasing subsets of the
adaptation space. Assume that the adaptation follows the
stochastic approximation dynamic

Xn ∼ PΘn−1
(Xn−1, · )

Θn = Θn−1 + ηnH(Θn−1, Xn).

and the adaptation parameter Θn ∈ Kn for all n ≥ 1.
◮ One may also enforce Θn ∈ Kn. . .

◮ Consider the following conditions for constants c < ∞ and
0 ≤ ǫ ≪ 1:
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General ergodicity result II

(A1) Drift and minorisation:

There is a drift function V : X → [1,∞) such that for all
n ≥ 1 and all s ∈ Kn

PsV (x) ≤ λnV (x) + 1Cn
(x)bn and (1)

Ps(x,A) ≥ 1Cn
(x)δnνn(A) (2)

where Cn ⊂ R
d are Borel sets, δn, λn ∈ (0, 1) and bn < ∞

are constants and νn is concentrated on Cn. Furthermore,
the constants are polynomially bounded so that

(1− λn)
−1 ∨ δ−1

n ∨ bn ≤ cnǫ.
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General ergodicity result III

(A2) Continuity:

For all n ≥ 1 and any r ∈ (0, 1], there is c′ = c′(r) ≥ 1 such
that for all s, s′ ∈ Kn,

‖Psf − Ps′f‖V r ≤ c′nǫ ‖f‖V r |s− s′|.

(A3) Bound for adaptation function:

There is a β ∈ [0, 1/2] such that for all n ≥ 1, s ∈ Kn and
x ∈ R

d

|H(s, x)| ≤ cnǫV β(x).

Matti Vihola On the stability and convergence of adaptive MCMC



Introduction
Some adaptive MCMC algorithms

Validity
Final remarks

Previous conditions
New results
Results for adaptive Metropolis
Results for adaptive scaling Metropolis

General ergodicity result IV

Theorem (Saksman and Vihola [2010])

Assume (A1)–(A3) hold and let f be a function with ‖f‖V α < ∞
for some α ∈ (0, 1− β). Assume ǫ < κ−1

∗ [(1/2) ∧ (1− α− β)],
where κ∗ ≫ 1 is an independent constant, and that
∑∞

k=1
kκ∗ǫ−1ηk < ∞. Then,

lim
n→∞

1

n

n
∑

k=1

f(Xk) =

∫

f(x)π(x)dx almost surely.
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Verifiable assumptions I

Definition (Strongly super-exponential target)

The target density π is continuously differentiable and has regular
tails that decay super-exponentially,

lim sup
|x|→∞

x

|x| ·
∇π(x)

|∇π(x)| < 0 and

lim
|x|→∞

x

|x|ρ · ∇ log π(x) = −∞,

with some ρ > 1.

(The “super-exponential case”, ρ = 1, is due to Jarner and Hansen
[2000] who ensure the geometric ergodicity of a nonadaptive
random-walk Metropolis process.)
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Verifiable assumptions II

x

0

α
∇π(x)

Figure: The condition lim sup|x|→∞
x
|x| ·

∇π(x)
|∇π(x)| < 0 implies that there is

an ε > 0 such that for any sufficiently large |x|, the angle α < π/2− ε.
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Verifiable assumptions III

Definition
The function f : Rd → R has at most exponential tails if there are
constants M, ξ < ∞ such that

|f(x)| ≤ Meξ|x| for all x ∈ R
d.

Matti Vihola On the stability and convergence of adaptive MCMC



Introduction
Some adaptive MCMC algorithms

Validity
Final remarks

Previous conditions
New results
Results for adaptive Metropolis
Results for adaptive scaling Metropolis

AM when π has unbounded support

◮ Saksman and Vihola [2010]: First ergodicity results for the
original AM algorithm, without upper bounding the
eigenvalues λ(Σn).

◮ Use the proposal covariance Σn = t2Cov(X1, . . . , Xn) + ǫI,
with ǫ > 0.

◮ SLLN and CLT for strongly super-exponential π and functions
with at most exponential tails.
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AM without the covariance lower bound I

Vihola [2011] contains partial results on the case Σn = t2Sn, that
is, without lower bounding the eigenvalues λ(Σn).

◮ Analysed first an ‘adaptive random walk’: AM run with ‘flat
target π ≡ 1’,

Xn+1 = Xn + tS1/2
n Wn+1

Sn+1 =
n

n+ 1
Sn +

1

n+ 1
(Xn+1 −Xn)

2.

◮ Ten sample paths of this process (univariate) started at
x0 = 0, s0 = 1 and with the constant t = 0.01:
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AM without the covariance lower bound II
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AM without the covariance lower bound III
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AM without the covariance lower bound IV

◮ It is shown that Sn → ∞ almost surely.

◮ The speed of growth is E[Sn] ∼ e2t
√
n.

◮ Using the same techniques, one can show the stability (and
ergodicity) of AM run with a univariate Laplace target π.

◮ These results have little direct practical value, but they
indicate that the AM covariance parameter Sn does not tend
to collapse.
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AM with a fixed proposal component I

◮ Instead of lower bounding the eigenvalues λ(Σn), employ a
fixed proposal component with a probability β ∈ (0, 1)
[Roberts and Rosenthal, 2009].

◮ This corresponds to an algorithm where the proposals Yn are
generated by

Yn = Xn−1 +

{

Σ
1/2
0 Wn, with probability β,

Σ
1/2
n−1Wn, otherwise.

with some fixed symm.pos.def. Σ0.

◮ In other words, one employs a mixture of ‘adaptive’ and
‘nonadaptive’ Markov kernels:

P (Xn ∈ A | X1, . . . , Xn−1) = (1− β)PΣn−1
(A) + βPΣ0

(A)
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AM with a fixed proposal component II

Vihola [2011] shows that, for example with a bounded and
compactly supported π or with a super-exponential π, the
eigenvalues λ(Σn) are bounded away from zero.

◮ Having a strongly super-exponential target, SLLN and CLT
hold for functions with at most exponential tails.

◮ Explicit upper and lower bounds for Σn unnecessary.

◮ Mixture proposal may be better in practice than the lower
bound ǫI.

Also Bai, Roberts, and Rosenthal [2008] analyse this algorithm.

◮ A completely different approach, with different assumptions.

◮ Also exponentially decaying π are considered; in this case the
fixed covariance Σ0 must be large enough.
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Ergodicity of unconstrained ASM algorithm

Vihola [2009] shows two results for the unmodified adaptation,
without any (upper or lower) bounds for Θn. Assume:

◮ the desired acceptance rate α∗ ∈ (0, 1/2).

◮ the adaptation weights satisfy
∑

η2n < ∞ (e.g. ηn = n−γ with
γ ∈ (1/2, 1]).

Two cases:

1. π is bounded, bounded away from zero on the support, and
the support X = {x : π(x) > 0} is compact and has a smooth
boundary.
Then, SLLN holds for bounded functions.

2. Suppose a strongly super-exponential target having tails with
uniformly smooth contours.
Then, SLLN holds for functions with at most exponential tails.
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Ergodicity of ASM within AM

The AM and ASM algorithms can be naturally used simultaneously
[Atchadé and Fort, 2010, Andrieu and Thoms, 2008].

◮ Define proposal covariance Cn−1 := Θn−1Cov(X1, . . . , Xn).

◮ Coerced acceptance rate and target covariance structure in
the adaptation.

◮ The technique in [Vihola, 2009] applies also in this case,
provided that the eigenvalues of the covariance part are
bounded within 0 < a ≤ b < ∞.

◮ The new RAM algorithm may be sometimes better than ASM
within AM. . .
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Final remarks I

◮ Current results show that some adaptive MCMC algorithms
are intrinsically stable, requiring no additional stabilisation
structures.

◮ Easier for practitioners; less parameters to ‘tune.’
◮ Showing that the methods are fairly ‘safe’ to apply.

◮ The results are related to the more general question of the
stability of the Robbins-Monro stochastic approximation with
Markovian noise.
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Final remarks II

◮ It is not necessary to use Gaussian proposal distributions. All
the above results apply to elliptical proposals satisfying a
particular tail decay condition. For example, the results apply
with multivariate Student distributions having the form

qc(z) ∝ (1 + ‖c−1/2z‖2)−
d+p

2

where p > 0 [Vihola, 2009].

◮ Current results apply only for targets with rapidly decaying
tails. It is important to establish similar results with
heavy-tailed targets.

◮ Overall, there is a need for more general yet practically
verifiable conditions to check the validity of the methods.
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Final remarks III

◮ There is also a free software available for testing several
adaptive random-walk MCMC algorithms, including the new
RAM approach [Vihola, 2010a]:
http://iki.fi/mvihola/grapham/
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