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Motif Discovery

Regulatory motifs: short DNA subsequences that control gene
expression

Goal: Find these motifs by detecting patterns that occur more often than
expected in a long DNA sequence

Neither pattern nor occurrence locations are known

Very hard problem since motifs are short, and vary between
occurrences

One of the most popular methods is based on a statistical model and
associated Gibbs sampler (Liu, Neuwald, & Lawrence 1995)
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Overview

We analyze the convergence rate of the Gibbs sampler

Show that if there is more than one true motif (will define) the
convergence rate decreases exponentially in the length of the DNA
sequence

Equivalently, run time increases exponentially in sequence length

In practice typically have > 1 true motif

Matches empirical results: sampler gets stuck in local modes and is
used only to find candidate motifs
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Overview

We also have progress towards a two-sided result:

We give empirical evidence that the Gibbs sampler is efficient if there is
no more than one true motif and inefficient if there is more than one

Conjecture: convergence rate decreases exponentially iff have > 1 true
motif

Supporting this, we prove polynomial decay of the convergence rate for
a case with no true motifs
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Overview
Some of the few meaningful bounds on convergence rate of a
Markov chain for a statistical application, as a function of statistical
quantities like # observations, # groups, . . .

Previous examples have mainly been for stylized target
distributions like mixtures of normals or Potts models, not for posterior
dist’ns from statistical practice

Roberts and Sahu (2001): approximate the rate of convergence of
Gibbs samplers for unimodal posterior densities in Rd by
approximating with a normal dist’n.

Guan and Krone (2007): Bound convergence rate of a particular
MC on a mixture of log-concave densities

We just learned Scott Schmidler has independently obtained
some results for the motif-discovery sampler
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Overview

Showing that a Markov chain used in statistics is well-behaved typically
consists of proving that it is geometrically ergodic

The motif sampler is uniformly ergodic (stronger) but often very inefficient

Numerous other statistical Markov chains may also be exponential-time
(based on poor empirical behavior in large problems)

model averaging in the context of regression with a large number of
predictors

MC for spatial mixture models based on Markov random fields, with
many spatial locations
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Motif Discovery
Goal: Discover repeating pattern in long DNA sequence.

1 2 3 4 5

1:   GGCTAT
2:   GGGTAT
3:   AGCTAT
4:   GGCTAT
5:   GGCTAT

θ1 θ2 θ3 θ4 θ5 θ6Top: sequence, bottom: highlighted subsequences

Both locations and pattern unknown;
Pattern may vary between occurrences
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Motif Discovery

Gibbs sampling method very popular (software packages
Bioprospector and AlignACE), but like other methods for motif
discovery gives different answers from different starting
locations

Actually a family of methods; we analyze a representative
model & associated Gibbs sampler
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Motif Discovery

Model (Liu, Neuwald, & Lawrence 1995):

S: sequence of nucleotides S ∈ {1, . . . , M}L (in practice M = 4)

w : fixed motif length

A: unknown vector of
indicators that a motif starts in each possible location in the sequence.

Actual model: motif can start in any site

We analyze a simplified case where a motif can only end at
locations divisible by w , so A ∈ {0, 1}L/w .

Ai = 1 means Swi−w+1:wi is a motif occurrence
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Motif Discovery

Model:

θj : unknown length-M vector of probabilities for each nucleotide at
position j in the motif; j = 1, . . . , w .

θ0: unknown length-M vector of probabilities for each nucleotide in
non-motif sites

Let Θ be the w ×M matrix having rows θj for j = 1, . . . , w

Called the “position-specific frequency matrix”; defines the motif
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Motif Discovery
Likelihood:

N(A(j)): vector of counts of each nucleotide in position j of all motif
occurrences, given A

N(Ac): vector of counts of each nucleotide in all non-motif sites

For any two vectors β = (β1, . . . , βK ) and N = (n1, . . . , nK ), define the
notation

βN =
KY

k=1

β
nk
k Γ(N) =

KY
k=1

Γ(nk ) |N| =
KX

k=1

nk

where Γ(·) is the gamma function.

⇒ Full-data likelihood:

π(S|Θ, θ0, A) = θ
N(Ac )
0 ×

wY
j=1

θ
N(A(j))

j
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Motif Discovery

Priors:

θj ∼ Dirichlet(βj); j = 0, . . . , w

Ai
iid∼ Bernoulli(p0) for fixed p0.

⇒ Posterior distribution:

π(A, Θ, θ0|S) ∝ p|A|0 (1− p0)
L/w−|A| × θ

N(Ac )+β0−1
0 ×

wY
j=1

θ
N(A(j))+βj−1
j
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Motif Discovery

Gibbs sampler:

Can integrate out Θ, θ0 to get a posterior distribution on A:

π(A|S) ∝ p|A|0 (1− p0)
L−|A| Γ(N(Ac) + β0)

Γ(|N(Ac)|+ |β0|)

wY
j=1

Γ(N(A(j)) + βj)

Γ(|N(A(j))|+ |βj |)
.

Update each Ai one-at-a-time according to its conditional distribution.
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Motif Discovery

Reason for the simplification (that motif can only end at locations wi):

Phase shift problem of original Gibbs sampler: gets stuck in minor
modes corresponding to a shifted version of true motif

Solution proposed (Liu 1994): add a Metropolis step for shifting the
motif

Our simplified Gibbs sampler captures the dynamics of the
original Gibbs sampler, minus the phase-shift

assumes that it is adequately addressed by Liu’s fix
“best-case” analysis
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Markov Chain Convergence

For a discrete-space Markov chain with transition matrix T , reversible
with respect to target distribution π:

The spectral gap is Gap(T ) ≡ 1− λ2 where λ2 is the 2nd-largest
eigenvalue of T

# iterations required to obtain n0 approximately independent samples
from π is O(n0Gap(T )−1 log ‖π0 − π‖L2), where π0 is the initial dist’n.

If Gap(T ) decreases exponentially in the dimension, the run time
increases exponentially and the chain is “slowly mixing.”

Gap(T ) decreases polynomially in the dimension: “rapidly mixing”
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Slow Mixing Result

Theorem
Defining J > 0 position-specific frequency matrices Θj∗ for j = 1, . . . , J and a
background frequency vector θ∗0 , assume that:

1 The data subsequences Swi−w+1:wi indexed by i are generated i.i.d.
from the following distribution G: with probability p0j > 0 generated from
the motif Θj∗, and otherwise generated according to the background
frequencies θ∗0 .

2 There is no equivalent data-generating mechanism with smaller J.

If there are multiple true motifs (J > 1), subject to the Condition below, and
taking p0 =

PJ
j=1 p0j the spectral gap of the Gibbs sampler decreases

exponentially in the sequence length L, almost surely w.r.t. G.
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Slow Mixing Result

Slow mixing example with w = 5 & M = 4:

S generated as the concatenation of many length-5 subsequences,
each of which is either (1, 3, 2, 2, 3) w.p. 0.003, or (4, 2, 4, 1, 1) w.p.
0.001, or generated as i.i.d. noise.
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Slow Mixing Result

In practice there are typically multiple true motifs, corresponding to
repeating patterns that have various biological purposes

Goal is to find the most frequently-occurring and well-conserved (Neuwald,
Liu, Lawrence 1995, Roth et al. 1998)

Our Thm. says that this contradicts the model assumption of a single motif,
causing slow mixing
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Slow Mixing Result
Hard to prove because:

1 Posterior density has a complex form

2 Data, and thus posterior density, are stochastic

Address by using Bayesian asymptotics for the case where the data
are not drawn from model (Berk 1966).

Results only available for continuous parameter spaces

Have to apply to a continuous parametrization, then map to the discrete
parameterization A.
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Slow Mixing Result

Technical Condition

Let f (s|Θ, θ0) be the density of each observation Swi−w+1:wi under the model.
The true density can be written

g(s) =
JX

j=1

p0j

p0
f (s|Θj∗, θ∗0 )
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Slow Mixing Result

Condition
The Kullback-Leibler divergence between f (s|Θ, θ0) and g(s),X

s

g(s) log
g(s)

f (s|Θ, θ0)

has multiple local minima (as a function of (Θ, θ0)).

Should usually hold since g(s) is a mixture of the densities f (s|Θj∗, θ∗0 );
divergence should be smallest when (Θ, θ0) ≈ (Θj∗, θ∗0 ) for some j
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Slow Mixing Result

Have verified this condition for many cases with varying true parameter
values.

Did this for w = 2, by plotting K-L divergence as a function of the three
parameters (θ11, θ21, θ01) and observing multiple local minima.

Used J = 2 and varied the true Θj∗, θ∗0 , p0j . Even for very extreme
values the condition holds.

Multimodality problem should be even worse for longer motifs (w > 2).
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Slow Mixing Result
K-L divergence for a particular case and a fixed value of θ01:
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Rapid Mixing Result

Simulations suggest that the sampler is rapidly mixing iff J ≤ 1 (no more than
one true motif).

We have one result in this direction, showing rapid mixing for the case where
w = 1 (in this case any true motif is indistinguishable from the background
signal, so J = 0)
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Rapid Mixing Result

Theorem

For w = 1 and any fixed p0 the spectral gap decreases polynomially in L; in
particular,

Gap(T ) = Ω(L−14)

uniformly over possible values of the data vector S.
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Simulations
Simulate data with varying #s of motifs, according to data-generating
mechanism from main Theorem.

True Θj∗ for each motif sampled from a product Dirichlet dist’n

Background probabilities θ∗0 from a Dirichlet

For each simulated dataset S, run the Gibbs sampler 5 times starting
from different initial vectors A

Report the Gelman-Rubin convergence diagnostic

Measures whether the chains converged to different modes
(1=good, bigger =bad)
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Simulations
Ex: Posterior density estimates of θ1,2 from two Gibbs runs, in the case of 2
true motifs:

theta_{2,1}
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Chain 1
Chain 2

Gelman-Rubin scale factor = 10.9 36
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Simulations
% of datasets for which the maximum Gelman-Rubin scale factor is > 1.5:

One motif:

w = 6 w = 10 w = 15
L/w = 2, 000 0 0 0
L/w = 3, 000 0 0 0
L/w = 4, 000 0 0 0
L/w = 8, 000 0 0 0

Two motifs:

w = 6 w = 10 w = 15
L/w = 2, 000 0 20 70
L/w = 3, 000 10 70 100
L/w = 4, 000 20 80 100
L/w = 8, 000 80 90 100
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Simulations

One motif: Good Markov chain convergence.

Two motifs: Multiple chains converge to different modes, for L large enough.

Results do not seem to depend on the choice of p0
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Alternative Slow Mixing Results

Recall the main Theorem:

Theorem
Defining J > 0 position-specific frequency matrices Θj∗ for j = 1, . . . , J and a
background frequency vector θ∗0 , assume that:

1 The data subsequences Swi−w+1:wi indexed by i are generated i.i.d.
from the following distribution G: with probability p0j > 0 generated from
the motif Θj∗, and otherwise generated according to the background
frequencies θ∗0 .

2 There is no equivalent data-generating mechanism with smaller J.

If there are multiple true motifs (J > 1), subject to the Condition, and taking
p0 =

PJ
j=1 p0j the spectral gap of the Gibbs sampler decreases exponentially

in the sequence length L, almost surely w.r.t. G.
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Alternative Slow Mixing Results

Simulations suggest that the same result holds for any fixed value of p0,
and that the technical condition holds in general.

We analyze the closed form of the posterior density to show slow mixing
for all p0 small enough, in specific cases.
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Alternative Slow Mixing Results

Case with w = 2, M = 2, two true motifs (the deterministic sequences
(1, 1) and (2, 2)), and no non-motif sites:

Theorem

When w = 2, M = 2, p0 < 1/4, and S consists of a concatenation of (1, 1)
and (2, 2) subsequences in equal numbers (e.g. S = 111122112222 for
L = 12), Gap(T ) decreases exponentially in L.

(Real data would additionally have noise, not considered here)
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Alternative Slow Mixing Results

Case with two motifs (1, 1) and (2, 2), and some non-motif sites:

Theorem

When w = 2, M = 2, and S consists of L/6 (1, 1) pairs, L/6 (2, 2) pairs, L/12
(1, 2) pairs, and L/12 (2, 1) pairs in any order, for any p0 small enough
Gap(T ) decreases exponentially in L.
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Proving Slow Mixing

Recall the main Theorem:

Theorem
Defining J > 0 position-specific frequency matrices Θj∗ for j = 1, . . . , J and a
background frequency vector θ∗0 , assume that:

1 The data subsequences Swi−w+1:wi indexed by i are generated i.i.d.
from the following distribution G: with probability p0j > 0 generated from
the motif Θj∗, and otherwise generated according to the background
frequencies θ∗0 .

2 There is no equivalent data-generating mechanism with smaller J.

If there are multiple true motifs (J > 1), subject to the Condition, and
taking p0 =

PJ
j=1 p0j the spectral gap of the Gibbs sampler decreases

exponentially in the sequence length L, almost surely w.r.t. G.
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Proving Slow Mixing

Intution:

(1) Gap(T ) is controlled by the unimodality or multimodality of the
posterior distribution

(Since T makes only local moves)

(2) With multiple true motifs the posterior dist’n has multiple local
maxima with height that grows exponentially in L (relative to the
height of the valleys in between)

(Proven using Bayesian asymptotic results for the case of an incorrect
model)
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Proving Slow Mixing
Plot of posterior density of a 2-D summary of A, for J = 2 motifs:
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Proving Slow Mixing: Step 2

Proving Step 2: (“With multiple true motifs the posterior dist’n has
multiple local maxima with height that grows exponentially in L”)

First we focus on the posterior π(Θ, θ0|S) of the continuous parameters
(Θ, θ0).

We show that π(Θ, θ0|S) has multiple local maxima with height that
grows exponentially in L

We map this result to the parametrization on which we simulate the
Markov chain: π(A|S)
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Proving Slow Mixing: Step 2

Proving Step 2: (“With multiple true motifs the posterior dist’n has
multiple local maxima with height that grows exponentially in L”)

First we focus on the posterior π(Θ, θ0|S) of the continuous parameters
(Θ, θ0).

We show that π(Θ, θ0|S) has multiple local maxima with height that
grows exponentially in L

We map this result to the parametrization on which we simulate the
Markov chain: π(A|S)
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Proving Slow Mixing: Step 2

We show that π(Θ, θ0|S) has multiple modes with height that grows
exponentially in L

We do this by applying Bayesian asymptotics

Specifically, results on the asymptotic behavior of the posterior
when the model is incorrect (Berk 1966, 1970)

These results are related to the “exponential consistency of posteriors”
(Ghosh, Delampady, & Samanta 2006; Choi & Ramamoorthi 2008;...)
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Conclusions

Gibbs sampling is a popular method for finding potential gene
regulatory binding motifs in DNA sequences

It tends to converge to a local mode, so it is applied repeatedly with
random restarts to generate candidate motifs

A better-mixing method could be used to instead find the best (most
probable) motifs

We analyze its convergence rate, showing exponential decay of the
convergence rate when there are multiple true motifs (typically the case)

We also show polynomial decay of the convergence rate in a case with
no identifiable motifs.
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Conclusions

Although it satisfies a very strong form of ergodicity (uniform), the
MC is typically unusable for obtaining samples from the posterior
distribution for long sequences

One of the first examples of a Markov chain method that provably
fails to obtain samples from the posterior distribution of a
statistical model in polynomial time

Other stats Markov chains may also have the exponential-time property

e.g. model averaging in the context of regression with a large
number of predictors
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Thanks

Many thanks to NSF for financial support, & to Krzysztof
Latuszynski for help with one of the proofs.
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