

Bayesian optimization for adaptive MCMC

Nando de Freitas + Nimalan Mahendran + Firas Hamze University of British Columbia January 2011

Talk outline

1. Bayesian optimization.

- > Overview.
- Gaussian process priors.
- Acquisition functions.

2. Application to Adaptive MCMC

- Overview of two-stage adaptation process.
- Cost functions.
- Stochastic policy.

3. Application to discrete Ising models

- > 2D Ferromagnet.
- 3D Spinglass
- Bolzmann machine with "Gabor" filters.

Talk outline

1. Bayesian optimization.

- > Overview.
- Gaussian process priors.
- Acquisition functions.

2. Application to Adaptive MCMC

- Overview of two-stage adaptation process.
- Cost functions.
- Stochastic policy.

3. Application to discrete Ising models

- > 2D Ferromagnet.
- 3D Spinglass
- Bolzmann machine with "Gabor" filters.

$$t = 4$$

Goal: Optimize an expensive function that is only known point-wise. No need for derivatives.

Bayesian optimization

- 1: for t = 1, 2, ... do
- 2: Find \mathbf{x}_t by combining attributes of the posterior distribution in a utility function u and maximizing:

 $\mathbf{x}_t = \operatorname{argmax}_{\mathbf{x}} u(\mathbf{x} | \mathcal{D}_{1:t-1}).$

- 3: Sample the objective function: $y_t = f(\mathbf{x}_t) + \varepsilon_t.$
- 4: Augment the data $\mathcal{D}_{1:t} = \{\mathcal{D}_{1:t-1}, (\mathbf{x}_t, y_t)\}$ and update the GP.
- 5: end for

Bayesian Optimization

- shown to be extremely efficient way to optimize (in terms of number of samples)
- works when objective is nonconvex, has unknown derivatives, etc.
- two parts: model of the objective and the acquisition function

Place a Gaussian process on "unknown" cost function

- GP is generalization of multivariate Gaussian to infinitely many dimensions
- Gaussian <u>distribution</u> is fully specified by mean vector and covariance matrix:

 $\mathbf{f}_{1:n} \sim \mathcal{N}(\mu_{1:n}, \Sigma_{1:n,1:n})$

Gaussian <u>process</u> is fully specified by mean and covariance <u>functions</u>:

 $f(\cdot) \sim \mathcal{GP}(m(\cdot), k(\cdot, \cdot))$

Gaussian process regression

• given a GP prior $f(\cdot) \sim \mathcal{GP}(m(\cdot), k(\cdot, \cdot))$ $k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left[-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{2\theta}\right]$

• and a set of data
$$\mathcal{D}_{1:t} = \mathbf{x}_{1:t}, y_{1:t}$$

 $y_i = f(\mathbf{x}_i) + \epsilon$
 $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$
• we get the posterior distribution over
functions:
 $f(\mathbf{x}')|\mathcal{D}_{1:t} \sim \mathcal{GP}(\mathbf{k}^T \mathbf{K}^{-1} y_{1:t}, k(\mathbf{x}', \mathbf{x}') - \mathbf{k}^T \mathbf{K}^{-1} \mathbf{k})$
 $[k(\mathbf{x}', \mathbf{x}_1), \dots, k(\mathbf{x}', \mathbf{x}_t)]$

• gives us predictive posterior distribution $y_{t+1}|\mathcal{D}_{1:t}, \mathbf{x}_{t+1} \sim \mathcal{N}(\underbrace{\mathbf{k}^{T}[\mathbf{K} + I\sigma_{n}^{2}]^{-1}y_{1:t}}_{\mu(\mathbf{x}_{t+1})}, \underbrace{k(\mathbf{x}_{t+1}, \mathbf{x}_{t+1}) - \mathbf{k}^{T}[\mathbf{K} + I\sigma_{n}^{2}]^{-1}\mathbf{k} + \sigma_{n}^{2}}_{\sigma^{2}(\mathbf{x}_{t+1}) + \sigma_{n}^{2}})$

Acquisition functions

- aka infill, figure of merit
- <u>acquisition function</u> guides the optimization by determining which \mathbf{x}_{t+1} to observe next
- uses predictive posterior to combine <u>exploration</u> (highvariance regions) and <u>exploitation</u> (high-mean regions)
- optimize to find sample point (can be done cheaply/approximately)

$$\mu^+ = \operatorname{argmax}_{\mathbf{x}_i \in \mathbf{x}_{1:t}} \mu(\mathbf{x}_i)$$

Probability of Improvement

$$PI(\mathbf{x}) = \Phi\left(\frac{\mu(\mathbf{x}) - \mu^+ - \xi}{\sigma(\mathbf{x})}\right)$$

Kushner 1964

Expected Improvement

$$EI(\mathbf{x}) = (\mu(\mathbf{x}) - \mu^{+} - \xi)\Phi(Z) + \sigma(\mathbf{x})\phi(Z)$$
$$Z = \frac{\mu(\mathbf{x}) - \mu^{+} - \xi}{\sigma(\mathbf{x})}$$
Mockus 1978

IVIOCKUS 1978

 Upper Confidence Bound $\text{GP-UCB}(\mathbf{x}) = \mu(\mathbf{x}) + \sqrt{\nu \tau_t} \sigma(\mathbf{x})$ Srinivas et al. 2010

Acquisition functions

ΡΙ

GP-UCB

 treat acquisition functions as <u>strategies</u> -- each nominates a point and we sample based on past performance

 pick <u>one</u>, update cumulative rewards for all, <u>according to the posterior</u> <u>mean</u> at the nominee location

Algorithm 3 Hedge [Auer et al., 1998]

1: Select parameter $\eta \in \mathbb{R}^+$. 2: Set $g_0^i = 0$ for i = 1, ..., K. 3: **for** t = 1, 2, ... **do** 4: Choose action i_t with probability $p_t(i) = \exp(\eta g_{t-1}^i) / \sum_{\ell=1}^K \exp(\eta g_{t-1}^\ell)$. 5: Receive rewards r_t^i . 6: Update gains $g_t^i = g_{t-1}^i + r_t^i$.

7: end for

Algorithm 4 GP-Hedge

- 1: Select parameter $\eta \in \mathbb{R}^+$.
- 2: Set $g_0^i = 0$ for $i = 1, \dots, K$.
- 3: for t = 1, 2, ... do
- 4: Nominate points from each acquisition function: $\mathbf{x}_t^i = \operatorname{argmax}_{\mathbf{x}} u_i(\mathbf{x}|\mathcal{D}_{1:t-1}).$
- 5: Select nominee $\mathbf{x}_t = \mathbf{x}_t^j$ with probability $p_t(j) = \exp(\eta g_{t-1}^i) / \sum_{\ell=1}^K \exp(\eta g_{t-1}^\ell)$.
- 6: Sample the objective function $y_t = f(\mathbf{x}_t) + \epsilon_t$.
- 7: Augment the data $\mathcal{D}_{1:t} = \{\mathcal{D}_{1:t-1}, (\mathbf{x}_t, y_t)\}$ and update the GP.
- 8: Receive rewards $r_t^i = \mu_t(\mathbf{x}_t^i)$ from the updated GP.
- 9: Update gains $g_t^i = g_{t-1}^i + r_t^i$.

10: end for

Could use other bandit algorithms instead... e.g. algorithms for imperfect observation games

Algorithm 5 Exp3 [Auer et al., 1998]

- 1: Select parameters $\eta \in \mathbb{R}^+$, $\gamma \in (0, 1]$.
- 2: for t = 1, 2, ... do
- 3: Get distribution \mathbf{p}_t from Hedge (Algorithm 3).
- 4: Choose action i_t to be j with probability $\hat{p}(j) = (1 \gamma)p_t(j) + \gamma/K$.
- 5: Receive reward $r_t^{i_t} \in [0, 1]$.
- 6: Return simulated reward vector $\hat{\mathbf{r}}_t$ to Hedge, where $\hat{r}_t^i = r_t^i / \hat{p}_t(i)$ if $j = i_t$, or $\hat{r}_t^i = 0$ otherwise.
- 7: end for

Theorem 1. Assume Exp3 is used to select between acquisition strategies, one of which is GP-UCB with parameters β_t , and we have a bound γ_T on the information gained at points selected by the algorithm after T iterations. Then with probability at least $1 - \delta$ the cumulative regret is bounded by

$$R_T \leq \sqrt{TC_1\beta_T\gamma_T} + \left[\sum_{t=1}^T \beta_t \sigma_{t-1}(\mathbf{x}_t^{\text{UCB}})\right] + O(T^{2/3}),$$

Talk outline

- 1. Bayesian optimization.
 - > Overview.
 - Gaussian process priors.
 - > Acquisition functions.

2. Application to Adaptive MCMC

- Overview of two-stage adaptation process.
- Cost functions.
- Stochastic policy.

3. Application to discrete Ising models

- > 2D Ferromagnet.
- 3D Spinglass
- Bolzmann machine with "Gabor" filters.

Bayesian optimized MCMC

Algorithm 1 Adaptive MCMC with Bayesian Optimization

1: for
$$i = 1, 2, ..., I$$
 do

- 2: Run Markov chain for L steps with parameters θ_i .
- 3: Use the drawn samples to obtain a noisy evaluation of the objective function: $z_i = h(\theta_i) + \epsilon$.
- 4: Augment the data $\mathcal{D}_{1:i} = \{\mathcal{D}_{1:i-1}, (\theta_i, z_i)\}.$
- 5: Update the GP's sufficient statistics.
- 6: Find θ_{i+1} by optimizing the acquisition function: $\theta_{i+1} = \arg \max_{\theta} u(\theta | \mathcal{D}_{1:i}).$

7: end for

Compare with stochastic optimization:

$$g(\theta) = \nabla h(\theta)$$

$$\theta_{i+1} = \theta_i + \gamma_{i+1} G\left(\theta_i, \mathbf{x}^{(0)}, \mathcal{X}_{i+1}, \mathcal{Y}_{i+1}\right)$$

Objective function

$$r(l,\theta) \triangleq \frac{1}{\delta_{\theta}^{2}} \mathbb{E}\left[(\mathbf{x}_{\theta}^{(t)} - \bar{\mathbf{x}}_{\theta})^{T} (\mathbf{x}_{\theta}^{(t+l)} - \bar{\mathbf{x}}_{\theta}) \right]$$
$$h(\theta) = 1 - (l_{\max}^{-1}) \sum_{l=1}^{l_{\max}} |r(l,\theta)|$$

$$\widehat{r}(l, \mathcal{X}^{\theta}) \triangleq \frac{1}{(L-l)\delta_{\theta}^{2}} \sum_{t=1}^{L-l} (\mathbf{x}_{\theta}^{(t)} - \bar{\mathbf{x}}_{\theta})^{T} (\mathbf{x}_{\theta}^{(t+l)} - \bar{\mathbf{x}}_{\theta})$$
$$\widehat{a}(\mathcal{X}^{\theta}) = 1 - (l_{\max}^{-1}) \sum_{l=1}^{l_{\max}} |\widehat{r}(l, \mathcal{X}^{\theta})|$$
$$\widehat{h}(\mathcal{X}^{\theta}) \triangleq \frac{1}{L-l_{\min}+1} \sum_{i=l_{\min}}^{L} \widehat{a}(\mathcal{E}_{i})$$

Markov chain $\mathcal{X}^{\theta} = \{\mathbf{x}_{\theta}^{(1)}, \mathbf{x}_{\theta}^{(2)}, \ldots\}$

Stochastic policy / mixture of MCMC kernels

Algorithm 2 SIR-based policy construction

- 1: Generate a set of candidate points $\tilde{\theta}_{1:N} \triangleq \{\tilde{\theta}_1, \dots, \tilde{\theta}_N\}$, using either Latin hypercubes or optimization methods.
- 2: Obtain the weights $\widetilde{w}_i = \exp(\mu(\widetilde{\theta}_i))$ for i = 1 : N by evaluating the Gaussian process mean function at each point in $\widetilde{\theta}_{1:N}$ and exponentiating it.
- 3: Normalize the weights: $w_i = \frac{\widetilde{w}_i}{\sum_{j=1}^N \widetilde{w}_j}$.
- 4: Resample, with replacement, M samples $\{\theta_i | i = 1, ..., M\}$ from the weighted discrete measure $\{(\tilde{\theta}_i, w_i) | i = 1, ..., N\}$.

Talk outline

- 1. Bayesian optimization.
 - > Overview.
 - Gaussian process priors.
 - > Acquisition functions.
- 2. Application to Adaptive MCMC
 - Overview of two-stage adaptation process.
 - Cost functions.
 - Stochastic policy.
- 3. Application to discrete Ising models
 - 2D Ferromagnet.
 - 3D Spinglass
 - Bolzmann machine with "Gabor" filters.

Ising models

space
$$S \triangleq \{0, 1\}^M$$

 $\pi(\mathbf{x}) = \frac{1}{Z(\beta)} e^{-\beta E(\mathbf{x})}$

 β is an inverse temperature

$$E(\mathbf{x}) \triangleq -\sum_{i,j} x_i J_{ij} x_j - \sum_i b_i x_i$$

Constrained Ising models

Consider a particular state \mathbf{c} , which for now can be considered arbitrary. We are interested in drawing samples from the set of all states at Hamming Distance n from \mathbf{c} , which we call $\mathcal{S}_n(\mathbf{c})$. For example if M = 3and $\mathbf{c} = [1, 1, 1]$, then $\mathcal{S}_0(\mathbf{c}) = \{[1, 1, 1]\}, \mathcal{S}_1(\mathbf{c}) =$ $\{[0, 1, 1], [1, 0, 1], [1, 1, 0]\},$ etc. Clearly, $|\mathcal{S}_n(\mathbf{c})| = {M \choose n}$. The partition function on $\mathcal{S}_n(\mathbf{c})$ is given by:

$$Z_n(\mathbf{c}) = \sum_{\mathbf{x} \in \mathcal{S}_n(\mathbf{c})} e^{-\beta E(\mathbf{x})}$$

$$\pi_n(\mathbf{x}) \triangleq \begin{cases} \frac{1}{Z_n} e^{-\beta E(\mathbf{x})} & \mathbf{x} \in \mathcal{S}_n \\ 0 & \text{otherwise} \end{cases}$$

Model variations

2D Ferro-magnet 2D Ising model Constrained RBM

All are conserved-order parameter Ising models

Insight: Nature's parameters are nice !

Intra-cluster move sampler

Figure 1: A visual illustration of the move process for up/down SAWs of length 3. The arrows represent the allowable moves from a state at that step; the red arrow shows the actual move taken in this example. From the system at state $\mathbf{x}_0 = [1, 1, 1, 1, 1, 0, 0]$ on S_5 , the *upward* SAW begins. Bit 4 of \mathbf{x}_0 is flipped to yield state $\mathbf{u}_1 = [1, 1, 1, 0, 1, 0, 0]$; the process is repeated until state $\mathbf{y} = [1, 0, 1, 0, 0, 0, 0]$ on S_2 is reached. From there, the *downward* SAW considers and selects sequences of states in an analogous manner (in this case, $\mathbf{d}_1 = [1, 0, 1, 0, 1, 0, 0]$ is visited from \mathbf{y} , etc.) until the final state $\mathbf{x}_1 = [1, 1, 1, 0, 1, 0, 1]$ is reached. The sequence of states taken by the upward and downward SAWs are, respectively, $\boldsymbol{\sigma} = [4, 2, 5]$ and $\boldsymbol{\rho} = [5, 7, 2]$.

Intra-cluster move sampler

$$f_{up}(\sigma_1 = i | \mathbf{x}_0) = \begin{cases} \frac{e^{-\gamma E(F(\mathbf{x}_0, i))}}{\sum_{j \in \mathcal{P}(\mathbf{x}_0)} e^{-\gamma E(F(\mathbf{x}_0, j))}} & i \in \mathcal{P}(\mathbf{x}_0) \\ 0 & \text{otherwise} \end{cases}$$

$$f_{down}(\rho_1 = i | \mathbf{y}) = \begin{cases} \frac{e^{-\gamma E(F(\mathbf{y}, i))}}{\sum_{j \in \mathcal{N}(\mathbf{y})} e^{-\gamma E(F(\mathbf{y}, j))}} & i \in \mathcal{N}(\mathbf{y}) \\ 0 & \text{otherwise} \end{cases}$$

$$f(\mathbf{x}_1, \boldsymbol{\sigma}, \boldsymbol{\rho} | \mathbf{x}_0) \triangleq \delta_{\mathbf{x}_1}[F(\mathbf{x}_0, \boldsymbol{\sigma}, \boldsymbol{\rho})] \prod_{i=1}^M f_{up}(\sigma_i | \mathbf{u}_{i-1}) \prod_{i=1}^M f_{down}(\rho_i | \mathbf{d}_{i-1})$$

$$\alpha(\mathbf{x}_0, \mathbf{x}_1, \boldsymbol{\sigma}, \boldsymbol{\rho}) \triangleq \min\left(1, \frac{\pi_n(\mathbf{x}_1) f(\mathbf{x}_0, R(\boldsymbol{\rho}), R(\boldsymbol{\sigma}) | \mathbf{x}_1)}{\pi_n(\mathbf{x}_0) f(\mathbf{x}_1, \boldsymbol{\sigma}, \boldsymbol{\rho} | \mathbf{x}_0)}\right)$$

$$\sum_{\boldsymbol{\sigma}'\boldsymbol{\rho}'} \pi_n(\mathbf{x}_0) K(\mathbf{x}_1, \boldsymbol{\sigma}', \boldsymbol{\rho}' | \mathbf{x}_0) = \sum_{\boldsymbol{\sigma}'\boldsymbol{\rho}'} \pi_n(\mathbf{x}_1) K(\mathbf{x}_0, R(\boldsymbol{\rho}'), R(\boldsymbol{\sigma}') | \mathbf{x}_1)$$

Simulation parameters

Model	β^{-1}	Size	n
2DGrid	2.27	60×60	1800 of 3600
3DCube	1.0	$9 \times 9 \times 9$	$364 ext{ of } 729$
RBM	1.0	v = 784, h = 500	428 of 1284

Model	Algorithm	${\cal L}$	${\cal G}$
2DGrid	IMExpert	$\{90\}$	$\{0.44\}$
2DGrid	Others	$\{1,\ldots,300\}$	[0, 0.88]
3DCube	IMExpert	$\{1,\ldots,25\}$	$\{0.8\}$
3DCube	Others	$\{1,\ldots,50\}$	[0, 1.6]
RBM	IMExpert	$\{1,\ldots,20\}$	$\{0.8\}$
RBM	Others	$\{1,\ldots,50\}$	[0, 1.6]

Ferro-magnet

3D Ising model

3D Ising model

Restricted Boltzmann machine

Restricted Boltzmann machine

Conclusions & Remarks

1. Bayesian optimization

- Could use X-armed bandits or parametric bandits instead (Munos, Svepesvari, Cappe, ...) for vanishing, infinite adaptation.
- Convergence analysis with Markov chains would then be needed.
- Not always a competitor for stochastic approximation, but in cases where we have a few discrete and continuous parameters and where the objective is non-differentiable or expensive, it does better.

2. Cost function

Not clear what the best cost functions should be!

3. Other optimization schemes

- Fixed learning rates & averaging.
- Second order methods with Conjugate gradient and LBFGS.

4. Compactness

Not unrealistic assumption, specially with projection in mind.

Thank you

Given a dataset $\mathbf{v}_{\mathbf{N}} = \{v_1, v_2, \dots, v_N\}$ where each data point v_n is a D dimensional vector, we wish to learn a parameterized probabilistic model to reveal structures in the data.

The K-dimensional latent vectors $\{h_1, h_2, ..., h_N\}$ can be used in place of the data for classification, denoising, semantic hashing, and more.

$$p(v, h|W) = \frac{1}{Z(W)} \exp(-E(v, h, W)),$$

E(v, h, W) is the energy function and Z(W) is a normalizing term:

$$Z(W) = \sum_{v' \in V} \sum_{h' \in H} p(v', h'|W).$$

In the binary case where $V = \{0, 1\}^D$ and $H = \{0, 1\}^K$ the energy function can be expressed as:

$$E(v,h,W) = -\sum_{i=1}^{D} \sum_{j=1}^{K} v_i W_{ij} h_j - \sum_{i=1}^{D} v_i c_i - \sum_{j=1}^{K} h_j b_j.$$

The conditionals can be easily obtained:

$$p(v_i = 1|h, W) = sigm\left(\sum_{j=1}^{K} W_{ij}h_j\right)$$

$$p(h_j = 1 | v, W) = sigm\left(\sum_{i=1}^{D} W_{ij} v_i\right),$$

where $sigm(a) = \frac{1}{1+exp(-a)}$. The model is therefore ideal for block Gibbs sampling.

Stochastic maximum likelihood algorithm

- 1. Set t = 1, and $\widetilde{h_n}^{(0)}$ to be a random K-dimensional binary vector.
- 2. Sample $\widetilde{v_n}^{(t)}$ from $p(v|\widetilde{h_n}^{(t-1)}, W^{(t)})$, and $\widetilde{h_n}^{(t)}$ from $p(h|\widetilde{v_n}^{(t)}, W^{(t)})$.
- 3. Update the parameters:

$$W_{dk}^{(t+1)} = W_{dk}^{(t)} - \eta^{(t)} \left[-\frac{1}{N} \sum_{n=1}^{N} v_{dn} E[h_k | v_n, W^{(t)}] + \frac{1}{N} \sum_{n=1}^{N} \widetilde{v_{dn}}^{(t)} E[h_k | \widetilde{v_{dn}}^{(t)}, W^{(t)}] \right]$$

4. Increase t to t + 1 and go to step 2.

Layer 2

Layer 3

Completing scenes

[Honglak Lee et al 2009]