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Goal: Optimize an 
expensive function that isexpensive function that is 
only known point-wise. No 

need for derivatives. 
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Place a Gaussian process on 
“unknown” cost functionunknown  cost function



Gaussian process regression





Acquisition 
functionsfunctions



AcquisitionAcquisition 
functions











Could use other bandit algorithms instead…  g
e.g. algorithms for imperfect observation games
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Bayesian optimized MCMC

C ith t h ti ti i tiCompare with stochastic optimization:



Objective function



Stochastic policy / mixture of 
MCMC kernelsMCMC kernels
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Ising models



Constrained Ising models



Model variations
2D Ferro-magnet Constrained RBM2D Ising model

All are conserved-order parameter Ising modelsAll are conserved order parameter Ising models



Feature vector

Hidden units (h) 1 10 0 0…

p(v,h) =
1

Z
e−E(v,h)

image patch (v)

p( , )
Z

Insight: Nature’s parameters are nice !



Intra-cluster move sampler



Intra-cluster move sampler



Simulation parameters



Ferro-magnet



Ferro-magnet



3D Ising model



3D Ising model



Restricted Boltzmann machine



Restricted Boltzmann machine



Conclusions & Remarks
1 B i i i i1.Bayesian optimization

Could use X-armed bandits or parametric bandits instead (Munos, 
Svepesvari, Cappe, …) for vanishing, infinite adaptation.
Convergence analysis with Markov chains would then be needed.
Not always a competitor for stochastic approximation, but in cases 
where we have a few discrete and continuous parameters and where 
th bj ti i diff ti bl i it d b ttthe objective is non-differentiable or expensive, it does better.

2. Cost function
Not clear what the best cost functions should be!

3 Other optimization schemes3. Other optimization schemes
Fixed learning rates & averaging.
Second order methods with Conjugate gradient and LBFGS.

4. Compactness
Not unrealistic assumption, specially with projection in mind.



Thank youThank you



Given a dataset vN = {v1, v2, ...vN} where each data point vn is a D
dimensional vector, we wish to learn a parameterized probabilistic, p p
model to reveal structures in the data.

The K-dimensional latent vectors {h1, h2, ..hN} can be used in place
of the data for classification denoising semantic hashing and moreof the data for classification, denoising, semantic hashing, and more.

p(v, h|W ) = 1

Z(W )
exp (−E(v, h,W )) ,

Z(W )

E(v, h,W ) is the energy function and Z(W ) is a normalizing term:

Z(W ) =
X
v0∈V

X
h0∈H

p(v0, h0|W ).



In the binary case where V = {0, 1}D and H = {0, 1}K the energy
function can be expressed as:function can be expressed as:

E(v, h,W ) = −
DX KX

viWijhj −
DX
vici −

KX
hjbj.( , , )

X
i=1

X
j=1

i ij j

X
i=1

i i

X
j=1

j j

The conditionals can be easily obtained:

p(vi = 1|h,W ) = sigm
⎛⎝ KX
j=1

Wijhj

⎞⎠⎝
j=1

⎠

p(hj = 1|v,W ) = sigm
Ã
DX
Wijvi

!
,

Ã
i=1

!

where sigm(a) = 1
1+exp(−a) . The model is therefore ideal for block

Gibbs samplingGibbs sampling.



Stochastic maximum likelihood algorithm

f (0)
1. Set t = 1, and fhn(0) to be a random K-dimensional binary
vector.

2 S l f(t) f ( |fh (t−1)
W (t)) d fh (t)

f (h|f(t) W (t))2. Sample vn
(t) from p(v|hn ,W (t)), and hn from p(h|vn(t),W (t)).

3. Update the parameters:"
N N

#
W

(t+1)
dk =W

(t)
dk −η(t)

"
− 1
N

NX
n=1

vdnE[hk|vn,W (t)] +
1

N

NX
n=1

gvdn(t)E[hk|gvdn(t),W (t)]

#

4. Increase t to t+ 1 and go to step 2.



Layer 1
Completing scenesg

Layer 2Layer 2

Layer 3y

[Honglak Lee et al 2009]


