
Solutions — Monte Carlo Methods

MIDO Master 1 (2025–2026)

Prepared by ChatGPT

Final Exam — 06/01/2026

PART I: Advanced Monte Carlo methods

Question 1 (Antithetic variates)

Let U ∼ Unif(0, 1) and I = E[g(U)]. Define

ÎMC
N =

1

N

N∑
i=1

g(Ui), ÎantN =
1

2N

N∑
i=1

(
g(Ui) + g(1− Ui)

)
,

with Ui i.i.d. Unif(0, 1).

(a) Sufficient condition for variance reduction.

Write for a single pair

Yi =
g(Ui) + g(1− Ui)

2
.

Then E[Yi] = E[g(U)] = I. We compare Var(Yi) and Var(g(U)). Using covariance,

Var(Yi) =
1

4

(
Var(g(U)) + Var(g(1− U)) + 2Cov(g(U), g(1− U))

)
.

Since g(1− U) has same law as g(U), Var(g(1− U)) = Var(g(U)). Therefore

Var(Yi) =
1

2
Var(g(U)) +

1

2
Cov(g(U), g(1− U)).

Thus a sufficient (and easily interpretable) condition for Var(ÎantN ) ≤ Var(ÎMC
N ) is

Cov(g(U), g(1− U)) ≤ 1

2
Var(g(U)) =⇒ Var(Yi) ≤ Var(g(U)).

(ChatGPT did not spot that this condition always holds!)
In particular, a simple sufficient condition is Cov(g(U), g(1 − U)) ≤ 0. Equivalently, if g
is monotone (either nondecreasing or nonincreasing) on [0, 1], then g(U) and g(1−U) are
negatively correlated and antithetic sampling reduces variance.

Justification: If g is monotone nondecreasing then g(U) and g(1 − U) are negatively
correlated because when U is large 1−U is small, so their product covariance is negative;
this yields variance reduction.

(b) Apply to g1(x) = ex, g2(x) = (x− 0.5)2, g3(x) = sin(4πx).
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• g1(x) = ex is strictly increasing on [0, 1]. Hence g1(U) and g1(1− U) are negatively
correlated ⇒ antithetic reduces variance.

• g2(x) = (x − 0.5)2 is symmetric about x = 0.5 and convex. Note g2(1 − x) = g2(x)
so g2(U) = g2(1− U) almost surely. Then

Yi =
g2(Ui) + g2(1− Ui)

2
= g2(Ui),

so antithetic sampling gives exactly the same estimator as standard Monte Carlo;
there is no variance reduction (variance is identical).

• g3(x) = sin(4πx) has period 1/2 and is an odd-symmetric-like oscillatory function on
[0, 1]: sin(4π(1−x)) = sin(4π−4πx) = − sin(4πx). Thus g3(1−x) = −g3(x). Hence

Yi =
g3(Ui) + g3(1− Ui)

2
=

g3(Ui)− g3(Ui)

2
= 0,

so antithetic estimator has zero variance (it gives the exact mean 0 for each pair).
Therefore antithetic sampling greatly reduces variance (to 0 for paired estimator).

Question 2 (Control variates)

Let X ∼ Unif(0, 1), target µ = E[X3] , and control h0(X) = X2 with known mean E[h0(X)] =
1/3.

(a) Control variate estimator and unbiasedness.

For sample X1, . . . , XN i.i.d., define the estimator

µ̂β =
1

N

N∑
i=1

(
X3

i − β(X2
i − 1/3)

)
.

Then E[µ̂β] = E[X3]− β(E[X2]− 1/3) = µ− β(1/3− 1/3) = µ, so it is unbiased for any
β ∈ R.

(b) Optimal coefficient β⋆.

Minimize Var(X3 − β(X2 − 1/3)) w.r.t. β. Optimal β⋆ is given by

β⋆ =
Cov(X3, X2)

Var(X2)
.

Compute the moments: for X ∼ Unif(0, 1),

E[X2] =
1

3
, E[X3] =

1

4
, E[X4] =

1

5
.

Then

Cov(X3, X2) = E[X5]− E[X3]E[X2], E[X5] =
1

6
.

So

Cov(X3, X2) =
1

6
− 1

4
· 1
3
=

1

6
− 1

12
=

1

12
.

And

Var(X2) = E[X4]− (E[X2])2 =
1

5
− 1

9
=

9− 5

45
=

4

45
.

Hence

β⋆ =
1
12
4
45

=
1

12
· 45
4

=
45

48
=

15

16
= 0.9375.
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Question 3 (Stratified sampling for g(x) = ex)

We stratify [0, 1) into K equal-length strata Dk = [(k − 1)/K, k/K), k = 1, . . . ,K. In stratum
Dk, X conditional is uniform on Dk.

(a) Intra-stratum mean and variance.

For X ∼ Unif([(k − 1)/K, k/K)),

µk = E[eX | X ∈ Dk] =

∫ k/K

(k−1)/K
ex

K dx

1
= K

(
ek/K − e(k−1)/K

)
.

The second moment in stratum:

E[e2X | X ∈ Dk] = K

∫ k/K

(k−1)/K
e2xdx =

K

2

(
e2k/K − e2(k−1)/K

)
.

Thus the intra-stratum variance is

σ2
k = Var(eX | X ∈ Dk) = E[e2X |Dk]−µ2

k =
K

2

(
e2k/K−e2(k−1)/K

)
−
(
K
(
ek/K−e(k−1)/K

))2

,

which depends on k (so variances differ across strata).

(b) Variance of stratified estimator.

With Yk,j = eXk,j , Yk̄ = 1
Nk

∑Nk
j=1 Yk,j and the stratified estimator

Istr =
1

K

K∑
k=1

Yk̄,

assuming independent simulation across and within strata,

Var(Istr) =
1

K2

K∑
k=1

σ2
k

Nk
.

(c) Optimal allocation Nk (N total).

Minimize Var(Istr) under constraint
∑K

k=1Nk = N . Standard result (Neyman allocation)
yields

N⋆
k ∝ σk =⇒ N⋆

k = N
σk∑K
j=1 σj

.

(d) R function MC(N).

R pseudocode (to be placed in R file):

MC <- function(N){

X <- runif(N)

Y <- exp(X)

est <- mean(Y)

var_est <- var(Y)/N

return(list(est=est, var=var_est))

}

(e) R function Stratified prop(N,K).

Proportional allocation (i.e. Nk = ⌊N/K⌋ or exactly Nk = ⌊N/K⌋ with remainder). R
pseudocode:

3



Stratified_prop <- function(N, K){

base <- floor(N/K)

rem <- N - base*K

Ns <- rep(base, K)

if(rem>0) Ns[1:rem] <- Ns[1:rem]+1

estimates <- numeric(K)

vars <- numeric(K)

for(k in 1:K){

a <- (k-1)/K

b <- k/K

Xk <- runif(Ns[k], min=a, max=b)

Yk <- exp(Xk)

estimates[k] <- mean(Yk)

vars[k] <- var(Yk)/Ns[k]

}

est <- mean(estimates)

var_est <- sum(vars)/K^2

return(list(est=est, var=var_est))

}

PART II: Multilevel Monte Carlo (MLMC)

Question 1 (Standard Monte Carlo)

Let µ̂N = 1
N

∑N
i=1Xi with i.i.d. samples.

(a) Var(µ̂N ) = Var(X)/N . Hence to achieve MSE(µ̂N ) = E[(µ̂N − µ)2] = Var(µ̂N ) = O(ε2)
we require N = O(ε−2).

(b) If cost per sample is C, total cost is Ctot = N · C = O(Cε−2).

Question 2 (Quadrature hierarchy)

Define for integer p ≥ 1,

Qℓ =
1

2ℓ

2ℓ∑
k=1

( k

2ℓ

)p
.

(a) I =
∫ 1
0 xpdx = 1

p+1 .

(b) Using Riemann sum error for smooth integrands, the uniform grid Riemann sum error
scales as O(2−ℓ). Hence Qℓ − I = O(2−ℓ).

(c) Using Faulhaber’s formula

N∑
k=1

kp =
Np+1

p+ 1
+

Np

2
+O(Np−1),

set N = 2ℓ and compute difference

Qℓ −Qℓ−1 = O(2−ℓ),

so (Qℓ) is Cauchy and converges (to I).
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Question 3 (Telescoping identity)

For integrable random variables Yℓ,

E[YL] = E[Y0] +
L∑

ℓ=1

E[Yℓ − Yℓ−1],

which is immediate by telescoping the finite sum.

Question 4 (Monte Carlo version of telescoping sum)

Let Zℓ be r.v. with E[Zℓ] = Qℓ, and define

ŶL =
1

N0

N0∑
i=1

Z
(i)
0 +

L∑
ℓ=1

1

Nℓ

Nℓ∑
i=1

(
Z

(i)
ℓ − Z

(i)
ℓ−1

)
.

(a) By linearity of expectation and E[Zℓ] = Qℓ, E[ŶL] = Q0 +
∑L

ℓ=1(Qℓ −Qℓ−1) = QL.

(b) If Nℓ → ∞ for all ℓ, each term converges in L2 to its expectation (variance → 0), hence
ŶL → QL in L2, thus also in L1.

(c) Choice of (Nℓ) affects variance since Var(ŶL) =
∑L

ℓ=0Var(Dℓ)/Nℓ plus covariances if
dependent; allocating more samples to levels with larger variance reduces total variance.

(d) If coupling uses same Z
(i)
ℓ across adjacent differences, cross-level covariances appear: with

D
(i)
ℓ = Z

(i)
ℓ − Z

(i)
ℓ−1,

Var(ŶL) =
L∑

ℓ=0

Var(Dℓ)

Nℓ
+ 2

∑
ℓ<m

Cov(
∑

iD
(i)
ℓ /Nℓ,

∑
j D

(j)
m /Nm)

.

If the same indices are used, cross terms for adjacent levels may not vanish.

(e) If level terms are independent, cross-level covariance terms vanish and

Var(ŶL) =
L∑

ℓ=0

Var(Dℓ)

Nℓ
.

This is smaller or simpler to analyze than the coupled case but coupling typically reduces
variances of differences and is therefore preferred.

Question 5 (Variance and cost analysis)

Let D
(i)
ℓ = Z

(i)
ℓ − Z

(i)
ℓ−1, vℓ = Var(Dℓ), cost per sample cℓ, covariance γℓ,m = Cov(Dℓ, Dm) and

assume γℓ,m = 0 for |ℓ−m| > 1.

(a) Aggregating variances and covariances (with possible non-equal Nℓ), one obtains

Var(ŶL) =
L∑

ℓ=0

vℓ
Nℓ

+ 2
L−1∑
ℓ=0

γℓ,ℓ+1

max(Nℓ, Nℓ+1)
,

where the max(Nℓ, Nℓ+1) appears when samples for adjacent levels are shared or partially
shared; this matches the exam statement. (But since (Nℓ) is non-increasing, this amounts
to using Nℓ)
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(b) In the independent-level case (γℓ,m = 0 for all ℓ ̸= m), minimize total cost C =
∑L

ℓ=0Nℓcℓ
subject to

∑L
ℓ=0 vℓ/Nℓ ≤ V0. Lagrangian:

L =

L∑
ℓ=0

Nℓcℓ + λ
( L∑

ℓ=0

vℓ
Nℓ

− V0

)
.

Stationarity: cℓ − λvℓN
−2
ℓ = 0 ⇒ Nℓ =

√
λ
√
vℓ/cℓ. Using constraint,

L∑
ℓ=0

vℓ
Nℓ

=
1√
λ

L∑
ℓ=0

√
vℓcℓ = V0.

Hence
√
λ = 1

V0

∑L
ℓ=0

√
vℓcℓ and

N⋆
ℓ =

√
vℓ/cℓ ·

1

V0

L∑
m=0

√
vmcm.

Total minimal cost:

Cmin =

L∑
ℓ=0

N⋆
ℓ cℓ =

1

V0

( L∑
ℓ=0

√
vℓcℓ

)2
.

Question 6 (Optimal MLMC complexity)

Assume vℓ ≍ 2−2ℓ and cℓ ≍ 2ℓ.

(a) Using Cmin with V0 ≍ ε2,
√
vℓcℓ ≍

√
2−2ℓ · 2ℓ = 2−ℓ/2.

Then
L∑

ℓ=0

√
vℓcℓ ≍

L∑
ℓ=0

2−ℓ/2 ≍ O(1)

(as L → ∞ this is a convergent geometric series). Hence

Cmin ≍ 1

V0
·O(1) = O(ε−2).

Thus MLMC cost scales as ε−2.

(b) For standard Monte Carlo at finest level L with bias and variance both O(ε2), choose L
such that bias |E[ZL]− I| ≍ 2−L ≍ ε. Thus 2L ≍ ε−1 and cost per sample cL ≍ 2L ≍ ε−1.
Number of samples N ≍ ε−2 to control variance, therefore total cost

CSL ≍ N · cL ≍ ε−2 · ε−1 = ε−3.

Hence standard Monte Carlo at fine resolution is ε−3 while MLMC attains ε−2: MLMC
is asymptotically far cheaper.
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Question 7 (Rigorous MLMC error bound)

Assume bias |E[YL]− I| ≤ B2−L.

(a) Choose L = ⌈log2(B/ε)⌉. Then

|E[YL]− I| ≤ B2−L ≤ B2− log2(B/ε) = ε.

(b) Using independence across levels and vℓ ≍ 2−2ℓ,

Var(ŶL) =

L∑
ℓ=0

vℓ
Nℓ

≤ C
L∑

ℓ=0

2−2ℓ

Nℓ
.

(c) Choose Nℓ ≍ 2−ℓε−2 (note: Nℓ decreasing in ℓ). Then

2−2ℓ

Nℓ
≍ 2−2ℓ

2−ℓε−2
= 2−ℓε2.

Summing gives Var(ŶL) ≍ ε2
∑L

ℓ=0 2
−ℓ = O(ε2).

(d) Combining bias squared O(ε2) and variance O(ε2) yields MSE O(ε2).

Question 8 (Debiasing single-term estimator)

Let (Yℓ)ℓ≥1 be biased approximations with E[Yℓ] → µ. We further define Y0 = 0.

(a) Formal telescoping:

µ = lim
L→∞

E[YL] =
∞∑
ℓ=1

E[Yℓ − Yℓ−1],

provided the infinite sum converges absolutely (or at least conditionally with integrability).

(b) Suppose L is random with Pr(L = ℓ) = pℓ > 0 for ℓ ≥ 1 and pℓ chosen so
∑

pℓ = 1.
Consider the single-term unbiased estimator

Ŷ =
YL − YL−1

pL
.

Then

E[Ŷ ] =
∑
ℓ≥1

pℓ
E[Yℓ − Yℓ−1]

pℓ
=

∑
ℓ≥1

E[Yℓ − Yℓ−1] = µ

yields an unbiased estimator of µ. Unbiasedness requires the series of expectations to
converge and

∑
pℓ = 1 with pℓ > 0 for terms used.

(c) Suppose Var(Yℓ − Yℓ−1) ≍ 2−2ℓ and choose pℓ ∝ 2−αℓ. Then

Var
(Yℓ − Yℓ−1

pℓ

)
≍ 2−2ℓ

p2ℓ
∝ 2−2ℓ · 22αℓ = 2(2α−2)ℓ.

For Var(Ŷ ) =
∑

ℓ pℓVar
(
(Yℓ − Yℓ−1)/pℓ

)
(not exactly, ChatGPT!) to be finite (roughly),

we need the terms to decay: require 2α − 2 < 0 ⇒ α < 1. More carefully, asymptotics
show that we need α < 1 to have finite variance.
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(d) Cost: if cost to compute Yℓ is O(2ℓ) and pℓ ∝ 2−αℓ then expected cost

E[cost] ∝
∑
ℓ≥1

pℓ2
ℓ ∝

∑
ℓ≥1

2(1−α)ℓ,

which is finite only if α > 1. Thus there is a trade-off:

• For finite variance require α < 1.

• For finite expected cost require α > 1.

Therefore no single α makes both variance and expected cost finite in this toy scaling;
in practice one tunes the tail pℓ to balance variance and cost (e.g., choose slightly above
1 and add variance control by coupling or truncation). Compared to MLMC: MLMC
attains optimal ε−2 cost under favorable scalings, while naive debiasing with single-term
randomization can have worse cost/variance trade-offs unless pℓ is chosen very carefully;
unbiased debiasing can be competitive but typically requires careful design (e.g., stratified
randomization, coupled differences).
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