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Final Exam — 06/01/2026

PART I: Advanced Monte Carlo methods

Question 1 (Antithetic variates)
Let U ~ Unif(0,1) and I = E[g(U)]. Define

N N

. 1 ; 1
RO= 3o, = 553 (00 900 00).
i=1 =1

with U; i.i.d. Unif(0, 1).

(a) Sufficient condition for variance reduction.

Write for a single pair
9(Ui) + 9(1 = Uj)
5 .
Then E[Y;] = E[g(U)] = I. We compare Var(Y;) and Var(g(U)). Using covariance,

Y, =

Var(¥;) = 1 (Var(g(U)) + Var(g(1L ~ 1)) + 2 Cov(g(U)). (1 ~ ).
Since g(1 — U) has same law as g(U), Var(g(1 — U)) = Var(g(U)). Therefore
Var(¥;) = 5 Var(g(U)) + 5 Cov(g(U), g(1 — V).
Thus a sufficient (and easily interpretable) condition for Var(13*) < Var(IN©) is
Cov(g(U), g1~ 1) < 3 Var(g(U)) = Var(¥;) < Var(g(D))

(ChatGPT did not spot that this condition always holds!)

In particular, a simple sufficient condition is Cov(g(U), ¢g(1 —U)) < 0. Equivalently, if ¢
is monotone (either nondecreasing or nonincreasing) on [0, 1], then ¢g(U) and g(1 —U) are
negatively correlated and antithetic sampling reduces variance.

Justification: If g is monotone nondecreasing then ¢g(U) and g(1 — U) are negatively
correlated because when U is large 1 — U is small, so their product covariance is negative;
this yields variance reduction.

(b) Apply to gi(z) = €*, g2(z) = (x — 0.5)%, g3(x) = sin(4rz).



e gi(z) = €” is strictly increasing on [0, 1]. Hence ¢1(U) and ¢;(1 — U) are negatively
correlated = antithetic reduces variance.

e go(x) = (x — 0.5)? is symmetric about z = 0.5 and convex. Note g2(1 — x) = ga(z)
50 g2(U) = g2(1 — U) almost surely. Then

U;) + g2(1 = U;
Y, = 92(U;) 32( ) = ¢o(U7),

so antithetic sampling gives exactly the same estimator as standard Monte Carlo;
there is no variance reduction (variance is identical).

e g3(x) = sin(4mx) has period 1/2 and is an odd-symmetric-like oscillatory function on

[0,1]: sin(47(1—z)) = sin(4dr — 4nwx) = —sin(4nz). Thus g3(1 —z) = —gs(x). Hence

93(Ui) +93(1 = Ui) _ g3(Ui) — g3(Us)
2 2

so antithetic estimator has zero variance (it gives the exact mean 0 for each pair).
Therefore antithetic sampling greatly reduces variance (to 0 for paired estimator).

Yi = =0,

Question 2 (Control variates)

Let X ~ Unif(0,1), target u = E[X?], and control ho(X) = X2 with known mean E[ho(X)] =

1/3.
(a)

Control variate estimator and unbiasedness.

For sample Xy, ..., Xy i.i.d., define the estimator

N
fis = 1 O (X~ BXT —1/3).
=1

Then E[ig] = E[X?] — B(E[X?] —1/3) = p— B(1/3 — 1/3) = u, so it is unbiased for any
B eR.

Optimal coefficient g*.

Minimize Var(X? — (X2 —1/3)) w.r.t. 3. Optimal 3* is given by

o Covx?, %)
~ Var(X?)
Compute the moments: for X ~ Unif(0, 1),
1
EX% =, E[X=7 E[X]=:
Then )
Cov(X?, X?) = E[X°] - E[X®*|E[X?, E[X5]:g'
%0 1 11 1 1 1
X3 X =-—-2.2 — - =
Cov( A5, X°) 36 12 12
And 1 1 9-5 4
X)) =EXY) - (EXY)>’=C - ="""=_
Var(X?) = E[X*) - (BIX})P = £ -5 =~ = -
Hence



Question 3 (Stratified sampling for g(z) = %)

We stratify [0,1) into K equal-length strata Dy, = [(k—1)/K,k/K), k=1,..., K. In stratum
D;., X conditional is uniform on Djy.

(a) Intra-stratum mean and variance.
For X ~ Unif([(k —1)/K,k/K)),

k/K K
iux = E[eX | X € Dy] = / AT (/K ey,
1
(k=1)/K
The second moment in stratum:
k/K K
Ee*X | X € Dy] =K 2 da = = (2K _ 2-1/KY,
(k—1)/K 2

Thus the intra-stratum variance is
K 2
o2 = Var(eX | X € Dy) = E[e?X|Dy]—p2 = E(er/K—ez(kfl)/K)— (K(ek/K—e(kl)/K)> ,

which depends on k (so variances differ across strata).

(b) Variance of stratified estimator.
With Yy, ; = eXri, Vi = Z;V:kl Y. ; and the stratified estimator

- N
1 K
Iy, = K;Yka

assuming independent simulation across and within strata,

1 & o2
Var([str) = ﬁ Z FI;
k=1

(c) Optimal allocation N; (N total).

Minimize Var(Is,) under constraint Zszl Ny = N. Standard result (Neyman allocation)
yields

Tk
K
j=1

Nf <oy = Nf=N .
o
J

(d) R function MC(N).
R pseudocode (to be placed in R file):

MC <- function(N){
X <- runif (N)
Y <- exp(X)
est <- mean(Y)
var_est <- var(Y)/N
return(list(est=est, var=var_est))

}

(e) R function Stratified_prop(N,K).

Proportional allocation (i.e. Ny = [N/K | or exactly Ny = |N/K| with remainder). R
pseudocode:



Stratified_prop <- function(N, K){
base <- floor(N/K)
rem <- N - basexK
Ns <- rep(base, K)
if (rem>0) Ns[1:rem] <- Ns[1:rem]+1
estimates <- numeric(K)
vars <- numeric(K)
for(k in 1:K){
a <- (k-1)/K
b <- k/K
Xk <- runif(Ns[k], min=a, max=b)
Yk <- exp(Xk)
estimates[k] <- mean(Yk)
vars[k] <- var(Yk)/Ns[k]
}
est <- mean(estimates)
var_est <- sum(vars)/K"2
return(list(est=est, var=var_est))

PART II: Multilevel Monte Carlo (MLMC)

Question 1 (Standard Monte Carlo)
Let iy = % Zf\il X; with i.i.d. samples.

(a) Var(fiy) = Var(X)/N. Hence to achieve MSE(jiiy) = E[(in — 1)?] = Var(fin) = O(e?)
we require N = O(e72).

(b) If cost per sample is C, total cost is Ciop = N - C' = O(Ce™2).

Question 2 (Quadrature hierarchy)

Define for integer p > 1,

1
(a) I= [, xPdx = ]ﬁ.

(b) Using Riemann sum error for smooth integrands, the uniform grid Riemann sum error

scales as O(27%). Hence Q, — I = O(27%).

(¢) Using Faulhaber’s formula

N

NP+l NP
Sk = STt TOWTTh,
k=1

set N = 2¢ and compute difference
Qr—Qr1=0(27"),
so (Qy) is Cauchy and converges (to I).



Question 3 (Telescoping identity)

For integrable random variables Yy,

L
E[Yz] = E[Yo] + > E[Y, — Y 1],
/=1

which is immediate by telescoping the finite sum.

Question 4 (Monte Carlo version of telescoping sum)

Let Zy be r.v. with E[Z] = Qy, and define
1 S2 0 N~ LN (0
1 3
IR I
=1 /=1 i=1

(a) By linearity of expectation and E[Z/] = Qr, E[Yz] = Qo + 31—, (Qe — Qr—1) = Q1.

(b) If Ny — oo for all £, each term converges in L? to its expectation (variance — 0), hence
Y7, — Qp in L?, thus also in L.

(¢) Choice of (N;) affects variance since Var(Yy) = ZZL:O Var(Dy)/N; plus covariances if
dependent; allocating more samples to levels with larger variance reduces total variance.

(4)

(d) If coupling uses same Z,
D( i) _ Z(l) Zél—)17

across adjacent differences, cross-level covariances appear: with

Cov(Y, DY /Ni, S, D) Ny)

L
Var(vy) = S Yl |y 5

If the same indices are used, cross terms for adjacent levels may not vanish.

(e) If level terms are independent, cross-level covariance terms vanish and

L
Var(Dg
Var YL Z
= N

This is smaller or simpler to analyze than the coupled case but coupling typically reduces
variances of differences and is therefore preferred.

Question 5 (Variance and cost analysis)

Let Déi) = Zéi) — Zéi_)l, ve = Var(Dy), cost per sample ¢;, covariance vy, = Cov(Dy, D,,) and
assume vy, = 0 for [ —m| > 1.

(a) Aggregating variances and covariances (with possible non-equal Ny), one obtains

L L-1

A " Ve, b1
Var(¥) — Y Lo 0
ar(Yr) ;_O: N, Ez_% max(Ng, Net1)’

where the max(Ny, Ny11) appears when samples for adjacent levels are shared or partially
shared; this matches the exam statement. (But since (Ny) is non-increasing, this amounts
to using Ny)



(b)

In the independent-level case (¢, = 0 for all £ # m), minimize total cost C' = ZeL:O Nycy
subject to ZeLzo ve/Ny < Vp. Lagrangian:

L L
L:ZNZCZJFA(Z%—%).
=0

=0

Stationarity: ¢y — )\U@NE_Q =0= N, = \/X\/’U(/Cg. Using constraint,

L L
vy 1

E — = — E Vveep = V.

= Ve Ao

Hence v\ = VLO ZzL:o \/Ugcy and

Total minimal cost:

Question 6 (Optimal MLMC complexity)

Assume vy =< 272 and ¢, < 20

(a)

Using Cpi, with Vg < g2,

VUpcy < V22 2t = 9742,
Then

L L
Z v/ Upcp X Z 272/2 = O(l)
=0 £=0
(as L — oo this is a convergent geometric series). Hence
Cinin < — - O(1) = O(e7?).

Thus MLMC cost scales as 2.

For standard Monte Carlo at finest level L with bias and variance both O(g?), choose L
such that bias |E[Z;] — I| < 271 < e. Thus 2 < 7! and cost per sample ¢, < 2L < 71
Number of samples N < 72 to control variance, therefore total cost

Cs, < N-cp=xe 2. a7 =¢73

Hence standard Monte Carlo at fine resolution is e =3 while MLMC attains e~2: MLMC
is asymptotically far cheaper.



Question 7 (Rigorous MLMC error bound)
Assume bias |E[Yz] — I| < B27F.

(a)

(b)

()

(d)

Choose L = [logy(B/e)]. Then

|E[Y;] —I| < B2~L < p2~lee=(B/e) — ¢

Using independence across levels and vy =< 272

L v L 2,23
Var(Yr) = — < —_—
i) =3 qe <oy 2
=0 =0
Choose Ny =< 27¢c=2 (note: N, decreasing in £). Then
2—2€ 9 20
I = = —97t2
Ng 2—te—2

Summing gives Var(Y7) = &2 ZEL:O 27 = O(e?).

Combining bias squared O(g?) and variance O(g?) yields MSE O(g?).

Question 8 (Debiasing single-term estimator)

Let (Yz)¢>1 be biased approximations with E[Y;] — . We further define Yy = 0.

(a)

Formal telescoping:

oo
p=lim E[Y;] = ZEH—YE 1,
=1

provided the infinite sum converges absolutely (or at least conditionally with integrability).

Suppose L is random with Pr(L = ¢) = py > 0 for ¢ > 1 and py chosen so > p, = 1.
Consider the single-term unbiased estimator

v YL_YL—l'
PL
Then v
=S Y Sy
>1 >1

yields an unbiased estimator of p. Unbiasedness requires the series of expectations to
converge and »_ p;, = 1 with py > 0 for terms used.

Suppose Var(Yy — Yp_1) < 272 and choose p; x 2=, Then

Y. —-Y,_ 2
Var( ¢ ¢ 1>x
Y24

—2¢

5 o 2—2[ . 220&6 — 2(2&—2)[
Dy

For Var(Y) = 3, ps Var((Yy — Yi—1)/pe) (not exactly, ChatGPT!) to be finite (roughly),
we need the terms to decay: require 2a — 2 < 0 = «a < 1. More carefully, asymptotics
show that we need o < 1 to have finite variance.



(d) Cost: if cost to compute Yy is O(2¢) and py oc 27 then expected cost

E[cost] Zpﬂe x Z g(1—a)t,

1 1
which is finite only if o > 1. Thus there is a trade-off:

e For finite variance require a < 1.

e For finite expected cost require a > 1.

Therefore no single o makes both variance and expected cost finite in this toy scaling;
in practice one tunes the tail p, to balance variance and cost (e.g., choose slightly above
1 and add variance control by coupling or truncation). Compared to MLMC: MLMC
attains optimal €2 cost under favorable scalings, while naive debiasing with single-term
randomization can have worse cost/variance trade-offs unless p, is chosen very carefully;
unbiased debiasing can be competitive but typically requires careful design (e.g., stratified
randomization, coupled differences).



