
Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo Methods

Christian P. Robert
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Motivation and leading example

Introduction

Latent structures make life harder!

Even simple models may lead to computational complications, as
in latent variable models

f(x|θ) =

∫
f?(x, x?|θ) dx?

If (x, x?) observed, fine!
If only x observed, trouble!
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Motivation and leading example

Introduction

Example (Mixture models)

Models of mixtures of distributions:

X ∼ fj with probability pj ,

for j = 1, 2, . . . , k, with overall density

X ∼ p1f1(x) + · · ·+ pkfk(x) .

For a sample of independent random variables (X1, · · · , Xn),
sample density

n∏
i=1

{p1f1(xi) + · · ·+ pkfk(xi)} .

Expanding this product involves kn elementary terms: prohibitive
to compute in large samples.
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Motivation and leading example

Likelihood methods

Maximum likelihood methods

Go Bayes!!

◦ For an iid sample X1, . . . , Xn from a population with density
f(x|θ1, . . . , θk), the likelihood function is

L(x|θ) = L(x1, . . . , xn|θ1, . . . , θk)

=
∏n

i=1
f(xi|θ1, . . . , θk).

θ̂n = arg max
θ

L(x|θ)

◦ Global justifications from asymptotics

◦ Computational difficulty depends on structure, eg latent
variables
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Likelihood methods

Example (Mixtures again)

For a mixture of two normal distributions,

pN (µ, τ2) + (1− p)N (θ, σ2) ,

likelihood proportional to

n∏
i=1

[
pτ−1ϕ

(
xi − µ
τ

)
+ (1− p) σ−1 ϕ

(
xi − θ
σ

)]
containing 2n terms.
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Likelihood methods

Standard maximization techniques often fail to find the global
maximum because of multimodality or undesirable behavior
(usually at the frontier of the domain) of the likelihood function.

Example

In the special case

f(x|µ, σ) = (1− ε) exp{(−1/2)x2}+
ε

σ
exp{(−1/2σ2)(x− µ)2}

(1)
with ε > 0 known, whatever n, the likelihood is unbounded:

lim
σ→0

L(x1, . . . , xn|µ = x1, σ) =∞
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Missing variable models

The special case of missing variable models

Consider again a latent variable representation

g(x|θ) =

∫
Z
f(x, z|θ) dz

Define the completed (but unobserved) likelihood

Lc(x, z|θ) = f(x, z|θ)

Useful for optimisation algorithm
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Missing variable models

The EM Algorithm

Gibbs connection Bayes rather than EM

Algorithm (Expectation–Maximisation)

Iterate (in m)

1. (E step) Compute

Q(θ; θ̂(m),x) = E[logLc(x,Z|θ)|θ̂(m),x] ,

2. (M step) Maximise Q(θ; θ̂(m),x) in θ and take

θ̂(m+1) = arg max
θ

Q(θ; θ̂(m),x).

until a fixed point [of Q] is reached
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Missing variable models
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Missing variable models
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Bayesian Methods

The Bayesian Perspective

In the Bayesian paradigm, the information brought by the data x,
realization of

X ∼ f(x|θ),

is combined with prior information specified by prior distribution
with density

π(θ)
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Bayesian Methods

Central tool

Summary in a probability distribution, π(θ|x), called the posterior
distribution
Derived from the joint distribution f(x|θ)π(θ), according to

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

,

[Bayes Theorem]

where

Z(x) =

∫
f(x|θ)π(θ)dθ

is the marginal density of X also called the (Bayesian) evidence
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Bayesian Methods

Central tool... central to Bayesian inference

Posterior defined up to a constant as

π(θ|x) ∝ f(x|θ)π(θ)

I Operates conditional upon the observations

I Integrate simultaneously prior information and information
brought by x

I Avoids averaging over the unobserved values of x

I Coherent updating of the information available on θ,
independent of the order in which i.i.d. observations are
collected

I Provides a complete inferential scope and a unique motor of
inference
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Bayesian troubles

Conjugate bonanza...

Example (Binomial)

For an observation X ∼ B(n, p) so-called conjugate prior is the
family of beta Be(a, b) distributions
The classical Bayes estimator δπ is the posterior mean

Γ(a+ b+ n)

Γ(a+ x)Γ(n− x+ b)

∫ 1

0
p px+a−1(1− p)n−x+b−1dp

=
x+ a

a+ b+ n
.
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Motivation and leading example

Bayesian troubles

Conjugate Prior

Conjugacy

Given a likelihood function L(y|θ), the family Π of priors π0 on Θ
is conjugate if the posterior π(θ|y) also belong to Π

In this case, posterior inference is tractable and reduces to
updating the hyperparameters∗ of the prior

∗The hyperparameters are parameters of the priors; they are most often not
treated as random variables
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Bayesian troubles

Discrete/Multinomial & Dirichlet

If the observations consist of positive counts Y1, . . . , Yd modelled
by a Multinomial distribution

L(y|θ, n) =
n!∏d
i=1 yi!

d∏
i=1

θyii

The conjugate family is the D(α1, . . . , αd) distribution

π(θ|α) =
Γ(
∑d

i=1 αi)∏d
i=1 Γ(αi)

d∏
i

θαi−1
i

defined on the probability simplex (θi ≥ 0,
∑d

i=1 θi = 1), where Γ
is the gamma function Γ(α) =

∫∞
0 tα−1e−tdt (Γ(k) = (k − 1)! for

integers k)
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Bayesian troubles

Figure: Dirichlet: 1D marginals
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Bayesian troubles

Figure: Dirichlet: 3D examples (projected on two dimensions)
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Bayesian troubles

Multinomial Posterior

Posterior
π(θ|y) = D(y1 + α1, . . . , yd + αd)

Posterior Mean† (
yi + αi∑d
j=1 yj + αj

)
1≤i≤d

MAP (
yi + αi − 1∑d
j=1 yj + αj − 1

)
1≤i≤d

if yi + αi > 1 for i = 1, . . . , d

Evidence

Z(y) =
Γ(
∑d

i=1 αi)
∏d
i=1 Γ(yi + αi)∏d

i=1 Γ(αi)Γ(
∑d

i=1 yi + αi)
†Also known as Laplace smoothing when αi = 1
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Bayesian troubles

Conjugate Priors for the Normal I

Conjugate Prior for the Normal Mean

For the N (y|µ,w) distribution with iid observations y1, . . . ,yn,
the conjugate prior for the mean µ is Gaussian N (µ|m0, v0):

π(µ|y1:n) ∝ exp
[
−(µ−m0)2/2v0

] n∏
k=1

exp
[
−(yk − µ)2/2w

]
∝ exp

{
−1

2

[
µ2

(
1

v0
+
n

w

)
− 2µ

(
m0

v0
+
sn
w

)]}
= N

(
µ

∣∣∣∣sn +m0w/v0

n+ w/v0
,

w

n+ w/v0

)
where sn =

∑n
k=1 yk

a

aAnd y1:n denotes the collection y1, . . . , yn
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Bayesian troubles

Conjugate Priors for the Normal II

Conjugate Priors for the Normal Variance

If w is to be estimated and µ is known, the conjugate prior for w is
the inverse Gamma distribution I G (w|α0, β0):

π0(w|β0, α0) =
βα0

0

Γ(α0)
w−α0+1e−β0/w

and

π(w|y1:n) ∝ w−(α0+1)e−β0/w
n∏
k=1

1√
w

exp
[
−(yk − µ)2/2w

]
= w−(n/2+α0+1) exp

[
−(s(2)

n /2 + β0)/w
]

where s
(2)
n =

∑n
k=1(Yk − µ)2.



Markov Chain Monte Carlo Methods

Motivation and leading example

Bayesian troubles

The Gamma, Chi-Square and Inverses

The Gamma Distributiona

aA different convention is to use Gam*(a,b), where b = 1/β is the scale
parameter

G a(θ|α, β) =
βα

Γ(α)
θα−1e−βθ

where α is the shape and β the inverse scale parameter
(E(θ) = α/β, Var(θ) = α/β2)

I θ ∼ I G (θ|α, β): 1/θ ∼ G a(θ|α, β)

I θ ∼ χ2(θ|ν): θ ∼ G a(θ|ν/2, 1/2)
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Bayesian troubles

Figure: Gamma pdf (k = α, θ = 1/β)
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Bayesian troubles

Conjugate Priors for the Normal IV

Example (Normal)

In the normal N (µ,w) case, with both µ and w unknown,
conjugate prior on θ = (µ,w) of the form

(w)−λw exp−
{
λµ(µ− ξ)2 + α

}
/w

since

π((µ,w)|x1, . . . , xn) ∝ (w)−λw exp−
{
λµ(µ− ξ)2 + α

}
/w

×(w)−n exp−
{
n(µ− x)2 + s2

x

}
/w

∝ (w)−λw+n exp−
{

(λµ + n)(µ− ξx)2

+α+ s2
x +

nλµ
n+ λµ

}
/w
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Bayesian troubles

Conjugate Priors for the Normal III

Conjugate Priors are However Available Only in Simple Cases

In the previous example the conjugate prior when both µ and w are
unknown is not particularly useful.

I Hence, it is very common to resort to independent marginally
conjugate priors: eg., in the Gaussian case, take
N (µ|m0, v0)I G (w|α0, β0) as prior, then π(µ|w, y) is
Gaussian, π(w|µ, y) is inverse-gamma but π(µ,w|y) does not
belong to a known family‡

I There nonetheless exists some important multivariate
extensions : Bayesian normal linear model, inverse-Wishart
distribution for covariance matrices

‡Although closed-form expressions for π(µ|y)
and π(w|y) are available
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Bayesian troubles

...and conjugate curse

Conjugate priors are very limited in scope

In addition, the use ofconjugate priors only for computational
reasons

• implies a restriction on the modeling of the available prior
information

• may be detrimental to the usefulness of the Bayesian approach

• gives an impression of subjective manipulation of the prior
information disconnected from reality.
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Bayesian troubles

A typology of Bayes computational problems

(i). latent variable models in general

(ii). use of a complex parameter space, as for instance in
constrained parameter sets like those resulting from imposing
stationarity constraints in dynamic models;

(iii). use of a complex sampling model with an intractable
likelihood, as for instance in some graphical models;

(iv). use of a huge dataset;

(v). use of a complex prior distribution (which may be the
posterior distribution associated with an earlier sample);
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Random variable generation

Random variable generation

• Rely on the possibility of producing (computer-wise) an
endless flow of random variables (usually iid) from well-known
distributions

• Given a uniform random number generator, illustration of
methods that produce random variables from both standard
and nonstandard distributions
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Random variable generation

Basic methods

The inverse transform method

For a function F on R, the generalized inverse of F , F−, is defined
by

F−(u) = inf {x; F (x) ≥ u} .

Definition (Probability Integral Transform)

If U ∼ U[0,1], then the random variable F−(U) has the distribution
F .
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Random variable generation

Basic methods

The inverse transform method (2)

To generate a random variable X ∼ F , simply generate

U ∼ U[0,1]

and then make the transform

x = F−(u)
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Random variable generation

Uniform pseudo-random generator

Desiderata and limitations
skip Uniform

• Production of a deterministic sequence of values in [0, 1] which
imitates a sequence of iid uniform random variables U[0,1].

• Can’t use the physical imitation of a “random draw” [no

guarantee of uniformity, no reproducibility]

• Random sequence in the sense: Having generated
(X1, · · · , Xn), knowledge of Xn [or of (X1, · · · , Xn)] imparts
no discernible knowledge of the value of Xn+1.

• Deterministic: Given the initial value X0, sample
(X1, · · · , Xn) always the same

• Validity of a random number generator based on a single
sample X1, · · · , Xn when n tends to +∞, not on replications

(X11, · · · , X1n), (X21, · · · , X2n), . . . (Xk1, · · · , Xkn)

where n fixed and k tends to infinity.
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Random variable generation

Uniform pseudo-random generator

Uniform pseudo-random generator

Algorithm starting from an initial value 0 ≤ u0 ≤ 1 and a
transformation D, which produces a sequence

(ui) = (Di(u0))

in [0, 1].
For all n,

(u1, · · · , un)

reproduces the behavior of an iid U[0,1] sample (V1, · · · , Vn) when
compared through usual tests
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Random variable generation

Uniform pseudo-random generator

Uniform pseudo-random generator (2)

• Validity means the sequence U1, · · · , Un leads to accept the
hypothesis

H : U1, · · · , Un are iid U[0,1].

• The set of tests used is generally of some consequence

◦ Kolmogorov–Smirnov and other nonparametric tests
◦ Time series methods, for correlation between Ui and

(Ui−1, · · · , Ui−k)
◦ Marsaglia’s battery of tests called Die Hard (!)
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Uniform pseudo-random generator

Usual generators
In R and S-plus, procedure runif()

The Uniform Distribution

Description:

‘runif’ generates random deviates.

Example:

u <- runif(20)

‘.Random.seed’ is an integer vector, containing

the random number generator state for random

number generation in R. It can be saved and

restored, but should not be altered by users.
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Uniform pseudo-random generator
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Uniform pseudo-random generator

Usual generators (2)
In C, procedure rand() or random()

SYNOPSIS

#include <stdlib.h>

long int random(void);

DESCRIPTION

The random() function uses a non-linear additive

feedback random number generator employing a

default table of size 31 long integers to return

successive pseudo-random numbers in the range

from 0 to RAND_MAX. The period of this random

generator is very large, approximately

16*((2**31)-1).

RETURN VALUE

random() returns a value between 0 and RAND_MAX.
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Uniform pseudo-random generator

Usual generators (3)

In Matlab and Octave, procedure rand()

RAND Uniformly distributed pseudorandom numbers.

R = RAND(M,N) returns an M-by-N matrix containing

pseudorandom values drawn from the standard uniform

distribution on the open interval(0,1).

The sequence of numbers produced by RAND is

determined by the internal state of the uniform

pseudorandom number generator that underlies RAND,

RANDI, and RANDN.



Markov Chain Monte Carlo Methods

Random variable generation

Uniform pseudo-random generator

Usual generators (4)

In Scilab, procedure rand()

rand() : with no arguments gives a scalar whose

value changes each time it is referenced. By

default, random numbers are uniformly distributed

in the interval (0,1). rand(’normal’) switches to

a normal distribution with mean 0 and variance 1.

EXAMPLE

x=rand(10,10,’uniform’)
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Beyond Uniform distributions

Beyond Uniform generators

• Generation of any sequence of random variables can be
formally implemented through a uniform generator

◦ Distributions with explicit F− (for instance, exponential, and
Weibull distributions), use the probability integral transform

here

◦ Case specific methods rely on properties of the distribution (for
instance, normal distribution, Poisson distribution)

◦ More generic methods (for instance, accept-reject)

• Simulation of the standard distributions is accomplished quite
efficiently by many numerical and statistical programming
packages.
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Transformation methods

Transformation methods

Case where a distribution F is linked in a simple way to another
distribution easy to simulate.

Example (Exponential variables)

If U ∼ U[0,1], the random variable

X = − logU/λ

has distribution

P (X ≤ x) = P (− logU ≤ λx)

= P (U ≥ e−λx) = 1− e−λx,

the exponential distribution E xp(λ).
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Transformation methods

Other random variables that can be generated starting from an
exponential include

Y = −2

ν∑
j=1

log(Uj) ∼ χ2
2ν

Y = − 1

β

a∑
j=1

log(Uj) ∼ G a(a, β)

Y =

∑a
j=1 log(Uj)∑a+b
j=1 log(Uj)

∼ Be(a, b)
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Transformation methods

Points to note

◦ Transformation quite simple to use

◦ There are more efficient algorithms for gamma and beta
random variables

◦ Cannot generate gamma random variables with a non-integer
shape parameter

◦ For instance, cannot get a χ2
1 variable, which would get us a

N (0, 1) variable.
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Transformation methods

Box-Muller Algorithm

Example (Normal variables)

If r, θ polar coordinates of (X1, X2), then,

r2 = X2
1 +X2

2 ∼ χ2
2 = E (1/2) and θ ∼ U [0, 2π]

Consequence: If U1, U2 iid U[0,1],

X1 =
√
−2 log(U1) cos(2πU2)

X2 =
√
−2 log(U1) sin(2πU2)

iid N (0, 1).
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Transformation methods

Box-Muller Algorithm (2)

1. Generate U1, U2 iid U[0,1] ;

2. Define

x1 =
√
−2 log(u1) cos(2πu2) ,

x2 =
√
−2 log(u1) sin(2πu2) ;

3. Take x1 and x2 as two independent draws from N (0, 1).
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Transformation methods

Box-Muller Algorithm (3)

I Unlike algorithms based on the CLT,
this algorithm is exact

I Get two normals for the price of
two uniforms

I Drawback (in speed)
in calculating log, cos and sin.
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Transformation methods

More transforms

Reject

Example (Poisson generation)

Poisson–exponential connection:
If N ∼ P(λ) and Xi ∼ E xp(λ), i ∈ N∗,

Pλ(N = k) =

Pλ(X1 + · · ·+Xk ≤ 1 < X1 + · · ·+Xk+1) .
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Transformation methods

More Poisson

Skip Poisson

• A Poisson can be simulated by generating E xp(1) till their
sum exceeds 1.

• This method is simple, but is really practical only for smaller
values of λ.

• On average, the number of exponential variables required is λ.

• Other approaches are more suitable for large λ’s.
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Transformation methods

Negative extension

I A generator of Poisson random variables can produce negative
binomial random variables since,

Y ∼ Ga(n, (1− p)/p) X|y ∼ P(y)

implies
X ∼ N eg(n, p)
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Transformation methods

Mixture representation

• The representation of the negative binomial is a particular
case of a mixture distribution

• The principle of a mixture representation is to represent a
density f as the marginal of another distribution, for example

f(x) =
∑
i∈Y

pi fi(x) ,

• If the component distributions fi(x) can be easily generated,
X can be obtained by first choosing fi with probability pi and
then generating an observation from fi.



Markov Chain Monte Carlo Methods

Random variable generation

Transformation methods

Partitioned sampling

Special case of mixture sampling when

fi(x) = f(x) IAi(x)

/∫
Ai

f(x) dx

and
pi = Pr(X ∈ Ai)

for a partition (Ai)i
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Accept-Reject Methods

Accept-Reject algorithm

• Many distributions from which it is difficult, or even
impossible, to directly simulate.

• Another class of methods that only require us to know the
functional form of the density f of interest only up to a
multiplicative constant.

• The key to this method is to use a simpler (simulation-wise)
density g, the instrumental density , from which the simulation
from the target density f is actually done.
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Fundamental theorem of simulation

Lemma

Simulating

X ∼ f(x)

equivalent to simulating

(X,U) ∼ U{(x, u) : 0 < u < f(x)} 0 2 4 6 8 10
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Fundamental theorem of simulation

The Accept-Reject algorithm

Given a density of interest f , find a density g and a constant M
such that

f(x) ≤Mg(x)

on the support of f .

Accept-Reject Algorithm

1. Generate X ∼ g, U ∼ U[0,1] ;

2. Accept Y = X if U ≤ f(X)/Mg(X) ;

3. Return to 1. otherwise.
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Random variable generation

Fundamental theorem of simulation

Validation of the Accept-Reject method

Warranty:

This algorithm produces a variable Y distributed according to f
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Fundamental theorem of simulation

Two interesting properties

◦ First, it provides a generic method to simulate from any
density f that is known up to a multiplicative factor
Property particularly important in Bayesian calculations where
the posterior distribution

π(θ|x) ∝ π(θ) f(x|θ) .

is specified up to a normalizing constant

◦ Second, the probability of acceptance in the algorithm is
1/M , e.g., expected number of trials until a variable is
accepted is M
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Fundamental theorem of simulation

More interesting properties

◦ In cases f and g both probability densities, the constant M is
necessarily larger that 1.

◦ The size of M , and thus the efficiency of the algorithm, are
functions of how closely g can imitate f , especially in the tails

◦ For f/g to remain bounded, necessary for g to have tails
thicker than those of f .
It is therefore impossible to use the A-R algorithm to simulate
a Cauchy distribution f using a normal distribution g, however
the reverse works quite well.
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Fundamental theorem of simulation

No Cauchy!

Example (Normal from a Cauchy)

Take

f(x) =
1√
2π

exp(−x2/2)

and

g(x) =
1

π

1

1 + x2
,

densities of the normal and Cauchy distributions.
Then

f(x)

g(x)
=

√
π

2
(1 + x2) e−x

2/2 ≤
√

2π

e
= 1.52

attained at x = ±1.
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Fundamental theorem of simulation

Example (Normal from a Cauchy (2))

So probability of acceptance

1/1.52 = 0.66,

and, on the average, one out of every three simulated Cauchy
variables is rejected.
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No Double!

Example (Normal/Double Exponential)

Generate a N (0, 1) by using a double-exponential distribution
with density

g(x|α) = (α/2) exp(−α|x|)

Then
f(x)

g(x|α)
≤
√

2

π
α−1e−α

2/2

and minimum of this bound (in α) attained for

α? = 1
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Example (Normal/Double Exponential (2))

Probability of acceptance √
π/2e = .76

To produce one normal random variable requires on the average
1/.76 ≈ 1.3 uniform variables.
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truncate

Example (Gamma generation)

Illustrates a real advantage of the Accept-Reject algorithm
The gamma distribution Ga(α, β) represented as the sum of α
exponential random variables, only if α is an integer
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Example (Gamma generation (2))

Can use the Accept-Reject algorithm with instrumental distribution

Ga(a, b), with a = [α], α ≥ 0.

(Without loss of generality, β = 1.)
Up to a normalizing constant,

f/gb = b−axα−a exp{−(1− b)x} ≤ b−a
(

α− a
(1− b)e

)α−a
for b ≤ 1.
The maximum is attained at b = a/α.
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Truncated Normal simulation

Example (Truncated Normal distributions)

Constraint x ≥ µ produces density proportional to

e−(x−µ)2/2σ2
Ix≥µ

for a bound µ large compared with µ
There exists alternatives far superior to the näıve method of
generating a N (µ, σ2) until exceeding µ, which requires an average
number of

1/Φ((µ− µ)/σ)

simulations from N (µ, σ2) for a single acceptance.
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Example (Truncated Normal distributions (2))

Instrumental distribution: translated exponential distribution,
E (α, µ), with density

gα(z) = αe−α(z−µ) Iz≥µ .

The ratio f/gα is bounded by

f/gα ≤

{
1/α exp(α2/2− αµ) if α > µ ,

1/α exp(−µ2/2) otherwise.
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Log-concave densities (1)

move to next chapter Densities f whose logarithm is concave, for
instance Bayesian posterior distributions such that

log π(θ|x) = log π(θ) + log f(x|θ) + c

concave
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Log-concave densities (2)

Take
Sn = {xi, i = 0, 1, . . . , n+ 1} ⊂ supp(f)

such that h(xi) = log f(xi) known up to the same constant.

By concavity of h, line Li,i+1 through
(xi, h(xi)) and (xi+1, h(xi+1))

I below h in [xi, xi+1] and

I above this graph outside this interval x 1 x 2 x 3 x 4

x

L    (x)2,3

log f(x)
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Log-concave densities (3)

For x ∈ [xi, xi+1], if

hn(x) = min{Li−1,i(x), Li+1,i+2(x)} and hn(x) = Li,i+1(x) ,

the envelopes are
hn(x) ≤ h(x) ≤ hn(x)

uniformly on the support of f , with

hn(x) = −∞ and hn(x) = min(L0,1(x), Ln,n+1(x))

on [x0, xn+1]c.
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Log-concave densities (4)

Therefore, if

f
n
(x) = exphn(x) and fn(x) = exphn(x)

then
f
n
(x) ≤ f(x) ≤ fn(x) = $n gn(x) ,

where $n normalizing constant of fn
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ARS Algorithm

1. Initialize n and Sn.

2. Generate X ∼ gn(x), U ∼ U[0,1].

3. If U ≤ f
n
(X)/$n gn(X), accept X;

otherwise, if U ≤ f(X)/$n gn(X), accept X
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kill ducks

Example (Northern Pintail ducks)

Ducks captured at time i with both probability pi and
size N of the population unknown.
Dataset

(n1, . . . , n11) = (32, 20, 8, 5, 1, 2, 0, 2, 1, 1, 0)

Number of recoveries over the years 1957–1968 of 1612
Northern Pintail ducks banded in 1956
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Example (Northern Pintail ducks (2))

Corresponding conditional likelihood

L(n1, . . . , nI |N, p1, . . . , pI) ∝
I∏
i=1

pnii (1− pi)N−ni ,

where I number of captures, ni number of captured animals
during the ith capture, and r is the total number of different
captured animals.
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Example (Northern Pintail ducks (3))

Prior selection
If

N ∼P(λ)

and

αi = log

(
pi

1− pi

)
∼ N (µi, σ

2),

[Normal logistic]
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Example (Northern Pintail ducks (4))

Posterior distribution

π(α,N |, n1, . . . , nI) ∝ N !

(N − r)!
λN

N !

I∏
i=1

(1 + eαi)−N

I∏
i=1

exp

{
αini −

1

2σ2
(αi − µi)2

}
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Example (Northern Pintail ducks (5))

For the conditional posterior distribution

π(αi|N,n1, . . . , nI) ∝ exp

{
αini −

1

2σ2
(αi − µi)2

}/
(1+eαi)N ,

the ARS algorithm can be implemented since

αini −
1

2σ2
(αi − µi)2 −N log(1 + eαi)

is concave in αi.
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Posterior distributions of capture log-odds ratios for the
years 1957–1965.
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Monte Carlo integration

Motivation and leading example

Random variable generation

Monte Carlo Integration
Introduction
Monte Carlo integration
Importance Sampling
Acceleration methods
Bayesian importance sampling

Notions on Markov Chains

The Metropolis-Hastings Algorithm

The Gibbs Sampler

Further Topics
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Introduction

Quick reminder

Two major classes of numerical problems that arise in statistical
inference

◦ Optimization - generally associated with the likelihood
approach

◦ Integration- generally associated with the Bayesian approach
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Introduction

skip Example!

Example (Bayesian decision theory)

Bayes estimators are not always posterior expectations, but rather
solutions of the minimization problem

min
δ

∫
Θ

L(θ, δ) π(θ) f(x|θ) dθ .

Proper loss:
For L(θ, δ) = (θ − δ)2, the Bayes estimator is the posterior mean
Absolute error loss:
For L(θ, δ) = |θ − δ|, the Bayes estimator is the posterior median
With no loss function
use the maximum a posteriori (MAP) estimator

arg max
θ
`(θ|x)π(θ)
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Monte Carlo integration

Monte Carlo integration

Theme:
Generic problem of evaluating the integral

I = Ef [h(X)] =

∫
X

h(x) f(x) dx

where X is uni- or multidimensional, f is a closed form, partly
closed form, or implicit density, and h is a function
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Monte Carlo integration

Monte Carlo integration (2)

Monte Carlo solution
First use a sample (X1, . . . , Xm) from the density f to
approximate the integral I by the empirical average

hm =
1

m

m∑
j=1

h(xj)

which converges
hm −→ Ef [h(X)]

by the Strong Law of Large Numbers
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Monte Carlo integration

Monte Carlo precision

Estimate the variance with

vm =
1

m− 1

m∑
j=1

[h(xj)− hm]2,

and for m large,

hm − Ef [h(X)]
√
vm

∼ N (0, 1).

Note: This can lead to the construction of a convergence test and
of confidence bounds on the approximation of Ef [h(X)].



Markov Chain Monte Carlo Methods

Monte Carlo Integration

Monte Carlo integration

Example (Cauchy prior/normal sample)

For estimating a normal mean, a robust prior is a Cauchy prior

X ∼ N (θ, 1), θ ∼ C(0, 1).

Under squared error loss, posterior mean

δπ(x) =

∫ ∞
−∞

θ

1 + θ2
e−(x−θ)2/2dθ∫ ∞

−∞

1

1 + θ2
e−(x−θ)2/2dθ
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Monte Carlo integration

Example (Cauchy prior/normal sample (2))

Form of δπ suggests simulating iid variables

θ1, · · · , θm ∼ N (x, 1)

and calculating

δ̂πm(x) =

m∑
i=1

θi
1 + θ2

i

/ m∑
i=1

1

1 + θ2
i

.

The Law of Large Numbers implies

δ̂πm(x) −→ δπ(x) as m −→∞.
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Monte Carlo integration
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Range of estimators δπm for 100 runs and x = 10
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Importance sampling

Paradox

Simulation from f (the true density) is not necessarily optimal

Alternative to direct sampling from f is importance sampling,
based on the alternative representation

Ef [h(X)] =

∫
X

[
h(x)

f(x)

g(x)

]
g(x) dx .

which allows us to use other distributions than f
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Importance sampling algorithm

Evaluation of

Ef [h(X)] =

∫
X

h(x) f(x) dx

by

1. Generate a sample X1, . . . , Xn from a distribution g

2. Use the approximation

1

m

m∑
j=1

f(Xj)

g(Xj)
h(Xj)
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Same thing as before!!!

Convergence of the estimator

1

m

m∑
j=1

f(Xj)

g(Xj)
h(Xj) −→

∫
X

h(x) f(x) dx

converges for any choice of the distribution g
[as long as supp(g) ⊃ supp(f)]
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Important details

◦ Instrumental distribution g chosen from distributions easy to
simulate

◦ The same sample (generated from g) can be used repeatedly,
not only for different functions h, but also for different
densities f

◦ Even dependent proposals can be used, as seen later
PMC chapter
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Although g can be any density, some choices are better than
others:

◦ Finite variance only when

Ef
[
h2(X)

f(X)

g(X)

]
=

∫
X
h2(x)

f2(X)

g(X)
dx <∞ .

◦ Instrumental distributions with tails lighter than those of f
(that is, with sup f/g =∞) not appropriate.

◦ If sup f/g =∞, the weights f(xj)/g(xj) vary widely, giving
too much importance to a few values xj .

◦ If sup f/g = M <∞, the accept-reject algorithm can be used
as well to simulate f directly.
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Example (Cauchy target)

Case of Cauchy distribution C(0, 1) when importance function is
Gaussian N (0, 1).
Ratio of the densities

%(x) =
p?(x)

p0(x)
=
√

2π
expx2/2

π (1 + x2)

very badly behaved: e.g.,∫ ∞
−∞

%(x)2p0(x)dx =∞ .

Poor performances of the associated importance sampling
estimator
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Range and average of 500 replications of IS estimate of
E[exp−X] over 10, 000 iterations.
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Optimal importance function

The choice of g that minimizes the variance of the
importance sampling estimator is

g∗(x) =
|h(x)| f(x)∫

Z |h(z)| f(z) dz
.

Rather formal optimality result since optimal choice of g∗(x)
requires the knowledge of I, the integral of interest!
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Practical impact

∑m
j=1 h(Xj) f(Xj)/g(Xj)∑m

j=1 f(Xj)/g(Xj)
,

where f and g are known up to constants.

◦ Also converges to I by the Strong Law of Large Numbers.

◦ Biased, but the bias is quite small

◦ In some settings beats the unbiased estimator in squared error
loss.

◦ Using the ‘optimal’ solution does not always work:∑m
j=1 h(xj) f(xj)/|h(xj)| f(xj)∑m

j=1 f(xj)/|h(xj)| f(xj)
=

#positive h−#negative h∑m
j=1 1/|h(xj)|
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Selfnormalised importance sampling

For ratio estimator

δnh =

n∑
i=1

ωi h(xi)

/ n∑
i=1

ωi

with Xi ∼ g(y) and Wi such that

E[Wi|Xi = x] = κf(x)/g(x)
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Selfnormalised variance

then

var(δnh) ≈ 1

n2κ2

(
var(Snh )− 2Eπ[h] cov(Snh , S

n
1 ) + Eπ[h]2 var(Sn1 )

)
.

for

Snh =

n∑
i=1

Wih(Xi) , Sn1 =
n∑
i=1

Wi

Rough approximation

varδnh ≈
1

n
varπ(h(X)) {1 + varg(W )}
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Example (Student’s t distribution)

X ∼ T (ν, θ, σ2), with density

fν(x) =
Γ((ν + 1)/2)

σ
√
νπ Γ(ν/2)

(
1 +

(x− θ)2

νσ2

)−(ν+1)/2

.

Without loss of generality, take θ = 0, σ = 1.
Problem: Calculate the integral∫ ∞

2.1

(
sin(x)

x

)n
fν(x)dx.
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Example (Student’s t distribution (2))

• Simulation possibilities

◦ Directly from fν , since fν = N (0,1)√
χ2
ν

◦ Importance sampling using Cauchy C (0, 1)
◦ Importance sampling using a normal N (0, 1)

(expected to be nonoptimal)
◦ Importance sampling using a U ([0, 1/2.1])

change of variables
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IS suffers from curse of dimensionality
As dimension increases, discrepancy between importance and
target worsens

skip explanation

Explanation:
Take target distribution µ and instrumental distribution ν
Simulation of a sample of iid samples of size n x1:n from µn = µ

⊗
n

Importance sampling estimator for µn(fn) =
∫
fn(x1:n)µn(dx1:n)

µ̂n(fn) =

∑N
i=1 fn(ξi1:n)

∏N
j=1W

i
j∑N

j=1

∏N
j=1Wj

,

where W i
k = dµ

dν (ξik), and ξij are iid with distribution ν.
For {Vk}k≥0, sequence of iid nonnegative random variables and for
n ≥ 1, Fn = σ(Vk; k ≤ n), set

Un =

n∏
k=1

Vk
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IS suffers (2)

Since E[Vn+1] = 1 and Vn+1 independent from Fn,

E(Un+1 | Fn) = UnE(Vn+1 | Fn) = Un,

and thus {Un}n≥0 martingale
Since x 7→

√
x concave, by Jensen’s inequality,

E(
√
Un+1 | Fn) ≤

√
E(Un+1 | Fn) ≤

√
Un

and thus {
√
Un}n≥0 supermartingale

Assume E(
√
Vn+1) < 1. Then

E(
√
Un) =

n∏
k=1

E(
√
Vk)→ 0, n→∞.
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IS suffers (3)

But {
√
Un}n≥0 is a nonnegative supermartingale and thus

√
Un

converges a.s. to a random variable Z ≥ 0. By Fatou’s lemma,

E(Z) = E
(

lim
n→∞

√
Un

)
≤ lim inf

n→∞
E(
√
Un) = 0.

Hence, Z = 0 and Un → 0 a.s., which implies that the martingale
{Un}n≥0 is not regular.

Apply these results to Vk = dµ
dν (ξik), i ∈ {1, . . . , N}:

E

[√
dµ

dν
(ξik)

]
≤ E

[
dµ

dν
(ξik)

]
= 1.

with equality iff dµ
dν = 1, ν-a.e., i.e. µ = ν.

Thus all importance weights converge to 0
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too volatile!

Example (Stochastic volatility model)

yt = β exp (xt/2) εt , εt ∼ N (0, 1)

with AR(1) log-variance process (or volatility)

xt+1 = ϕxt + σut , ut ∼ N (0, 1)
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Evolution of IBM stocks (corrected from trend and log-ratio-ed)
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Example (Stochastic volatility model (2))

Observed likelihood unavailable in closed from.
Joint posterior (or conditional) distribution of the hidden state
sequence {Xk}1≤k≤K can be evaluated explicitly

K∏
k=2

exp−
{
σ−2(xk − φxk−1)2 + β−2 exp(−xk)y2

k + xk
}
/2 , (2)

up to a normalizing constant.
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Computational problems

Example (Stochastic volatility model (3))

Direct simulation from this distribution impossible because of

(a) dependence among the Xk’s,

(b) dimension of the sequence {Xk}1≤k≤K , and

(c) exponential term exp(−xk)y2
k within (2).
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Importance sampling

Example (Stochastic volatility model (4))

Natural candidate: replace the exponential term with a quadratic
approximation to preserve Gaussianity.
E.g., expand exp(−xk) around its conditional expectation φxk−1 as

exp(−xk) ≈ exp(−φxk−1)

{
1− (xk − φxk−1) +

1

2
(xk − φxk−1)2

}
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Example (Stochastic volatility model (5))

Corresponding Gaussian importance distribution with mean

µk =
φxk−1{σ−2 + y2

k exp(−φxk−1)/2} − {1− y2
k exp(−φxk−1)}/2

σ−2 + y2
k exp(−φxk−1)/2

and variance

τ2
k = (σ−2 + y2

k exp(−φxk−1)/2)−1

Prior proposal on X1,

X1 ∼ N (0, σ2)
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Example (Stochastic volatility model (6))

Simulation starts with X1 and proceeds forward to Xn, each Xk

being generated conditional on Yk and the previously generated
Xk−1.
Importance weight computed sequentially as the product of

exp−
{
σ−2(xk − φxk−1)2 + exp(−xk)y2

k + xk
}
/2

exp−
{
τ−2
k (xk − µk)2

}
τ−1
k

.

(1 ≤ k ≤ K)



Markov Chain Monte Carlo Methods

Monte Carlo Integration

Importance Sampling

log−weights

D
e

n
s
it
y

−20 −15 −10 −5 0 5 10

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

0 200 400 600 800 1000

−
0

.4
−

0
.3

−
0

.2
−

0
.1

0
.0

0
.1

t

Histogram of the logarithms of the importance weights (left)
and comparison between the true volatility and the best fit,
based on 10, 000 simulated importance samples.



Markov Chain Monte Carlo Methods

Monte Carlo Integration

Importance Sampling

0 200 400 600 800 1000

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

t

Highest weight trajectories

Corresponding range of the simulated {Xk}1≤k≤100,
compared with the true value.



Markov Chain Monte Carlo Methods

Monte Carlo Integration

Acceleration methods

Correlated simulations

Negative correlation reduces variance
Special technique — but efficient when it applies
Two samples (X1, . . . , Xm) and (Y1, . . . , Ym) from f to estimate

I =

∫
R
h(x)f(x)dx

by

Î1 =
1

m

m∑
i=1

h(Xi) and Î2 =
1

m

m∑
i=1

h(Yi)

with mean I and variance σ2
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Variance reduction

Variance of the average

var

(
Î1 + Î2

2

)
=
σ2

2
+

1

2
cov(Î1, Î2).

If the two samples are negatively correlated,

cov(Î1, Î2) ≤ 0 ,

they improve on two independent samples of same size
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Antithetic variables

◦ If f symmetric about µ, take Yi = 2µ−Xi

◦ If Xi = F−1(Ui), take Yi = F−1(1− Ui)
◦ If (Ai)i partition of X , partitioned sampling by sampling
Xj ’s in each Ai (requires to know Pr(Ai))
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Control variates

out of control!

For

I =

∫
h(x)f(x)dx

unknown and

I0 =

∫
h0(x)f(x)dx

known,

I0 estimated by Î0 and

I estimated by Î
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Control variates (2)

Combined estimator

Î∗ = Î + β(Î0 − I0)

Î∗ is unbiased for I and

var(Î∗) = var(Î) + β2var(Î) + 2βcov(Î, Î0)
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Optimal control

Optimal choice of β

β? = −cov(Î, Î0)

var(Î0)
,

with
var(Î?) = (1− ρ2) var(Î) ,

where ρ correlation between Î and Î0

Usual solution: regression coefficient of h(xi) over h0(xi)
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Example (Quantile Approximation)

Evaluate

% = Pr(X > a) =

∫ ∞
a

f(x)dx

by

%̂ =
1

n

n∑
i=1

I(Xi > a),

with Xi iid f .
If Pr(X > µ) = 1

2 known
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Example (Quantile Approximation (2))

Control variate

%̃ =
1

n

n∑
i=1

I(Xi > a) + β

(
1

n

n∑
i=1

I(Xi > µ)− Pr(X > µ)

)

improves upon %̂ if

β < 0 and |β| < 2
cov(%̂, %̂0)

var(%̂0)
2

Pr(X > a)

Pr(X > µ)
.
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Integration by conditioning

Use Rao-Blackwell Theorem

var(E[δ(X)|Y]) ≤ var(δ(X))
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Consequence

If Î unbiased estimator of I = Ef [h(X)], with X simulated from a
joint density f̃(x, y), where∫

f̃(x, y)dy = f(x),

the estimator
Î∗ = Ef̃ [Î|Y1, . . . , Yn]

dominate Î(X1, . . . , Xn) variance-wise (and is unbiased)
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skip expectation

Example (Student’s t expectation)

For
E[h(x)] = E[exp(−x2)] with X ∼ T (ν, 0, σ2)

a Student’s t distribution can be simulated as

X|y ∼ N (µ, σ2y) and Y −1 ∼ χ2
ν .
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Example (Student’s t expectation (2))

Empirical distribution

1

m

m∑
j=1

exp(−X2
j ) ,

can be improved from the joint sample

((X1, Y1), . . . , (Xm, Ym))

since

1

m

m∑
j=1

E[exp(−X2)|Yj ] =
1

m

m∑
j=1

1√
2σ2Yj + 1

is the conditional expectation.
In this example, precision ten times better
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Estimators of E[exp(−X2)]: empirical average (full) and
conditional expectation (dotted) for (ν, µ, σ) = (4.6, 0, 1).
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Bayesian model choice

directly Markovian

Probabilise the entire model/parameter space

I allocate probabilities pi to all models Mi

I define priors πi(θi) for each parameter space Θi

I compute

π(Mi|x) =

pi

∫
Θi

fi(x|θi)πi(θi)dθi∑
j

pj

∫
Θj

fj(x|θj)πj(θj)dθj

I take largest π(Mi|x) to determine “best” model,
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Bayes factor

Definition (Bayes factors)

For testing hypotheses H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0, under prior

π(Θ0)π0(θ) + π(Θc
0)π1(θ) ,

central quantity

B01 =
π(Θ0|x)

π(Θc
0|x)

/
π(Θ0)

π(Θc
0)

=

∫
Θ0

f(x|θ)π0(θ)dθ∫
Θc0

f(x|θ)π1(θ)dθ

[Jeffreys, 1939]
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Evidence

Problems using a similar quantity, the evidence

Ek =

∫
Θk

πk(θk)Lk(θk) dθk,

aka the marginal likelihood.
[Jeffreys, 1939]
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Bayes factor approximation

When approximating the Bayes factor

B01 =

∫
Θ0

f0(x|θ0)π0(θ0)dθ0∫
Θ1

f1(x|θ1)π1(θ1)dθ1

use of importance functions $0 and $1 and

B̂01 =
n−1

0

∑n0
i=1 f0(x|θi0)π0(θi0)/$0(θi0)

n−1
1

∑n1
i=1 f1(x|θi1)π1(θi1)/$1(θi1)
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Diabetes in Pima Indian women

Example (R benchmark)

“A population of women who were at least 21 years old, of Pima
Indian heritage and living near Phoenix (AZ), was tested for
diabetes according to WHO criteria. The data were collected by
the US National Institute of Diabetes and Digestive and Kidney
Diseases.”
200 Pima Indian women with observed variables

I plasma glucose concentration in oral glucose tolerance test

I diastolic blood pressure

I diabetes pedigree function

I presence/absence of diabetes
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Probit modelling on Pima Indian women

Probability of diabetes function of above variables

P(y = 1|x) = Φ(x1β1 + x2β2 + x3β3) ,

Test of H0 : β3 = 0 for 200 observations of Pima.tr based on a
g-prior modelling:

β ∼ N3(0, n
(
XTX)−1

)
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MCMC 101 for probit models

Use of either a random walk proposal

β′ = β + ε

in a Metropolis-Hastings algorithm (since the likelihood is
available)
or of a Gibbs sampler that takes advantage of the missing/latent
variable

z|y, x, β ∼ N (xTβ, 1)
{
Iyz≥0 × I1−yz≤0

}
(since β|y,X, z is distributed as a standard normal)

[Gibbs three times faster]



Markov Chain Monte Carlo Methods

Monte Carlo Integration

Bayesian importance sampling

Importance sampling for the Pima Indian dataset

Use of the importance function inspired from the MLE estimate
distribution

β ∼ N (β̂, Σ̂)

R Importance sampling code
model1=summary(glm(y~-1+X1,family=binomial(link="probit")))

is1=rmvnorm(Niter,mean=model1$coeff[,1],sigma=2*model1$cov.unscaled)

is2=rmvnorm(Niter,mean=model2$coeff[,1],sigma=2*model2$cov.unscaled)

bfis=mean(exp(probitlpost(is1,y,X1)-dmvlnorm(is1,mean=model1$coeff[,1],

sigma=2*model1$cov.unscaled))) / mean(exp(probitlpost(is2,y,X2)-

dmvlnorm(is2,mean=model2$coeff[,1],sigma=2*model2$cov.unscaled)))
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Diabetes in Pima Indian women
Comparison of the variation of the Bayes factor approximations
based on 100 replicas for 20, 000 simulations from the prior and
the above MLE importance sampler

Basic Monte Carlo Importance sampling

2
3

4
5
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Bridge sampling

Special case:
If

π1(θ1|x) ∝ π̃1(θ1|x)
π2(θ2|x) ∝ π̃2(θ2|x)

live on the same space (Θ1 = Θ2), then

B12 ≈
1

n

n∑
i=1

π̃1(θi|x)

π̃2(θi|x)
θi ∼ π2(θ|x)

[Gelman & Meng, 1998; Chen, Shao & Ibrahim, 2000]
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Bridge sampling variance

The bridge sampling estimator does poorly if

var(B̂12)

B2
12

≈ 1

n
E

[(
π1(θ)− π2(θ)

π2(θ)

)2
]

is large, i.e. if π1 and π2 have little overlap...
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(Further) bridge sampling

General identity:

B12 =

∫
π̃2(θ|x)α(θ)π1(θ|x)dθ∫
π̃1(θ|x)α(θ)π2(θ|x)dθ

∀ α(·)

≈

1

n1

n1∑
i=1

π̃2(θ1i|x)α(θ1i)

1

n2

n2∑
i=1

π̃1(θ2i|x)α(θ2i)

θji ∼ πj(θ|x)
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Optimal bridge sampling

The optimal choice of auxiliary function is

α? =
n1 + n2

n1π1(θ|x) + n2π2(θ|x)

leading to

B̂12 ≈

1

n1

n1∑
i=1

π̃2(θ1i|x)

n1π1(θ1i|x) + n2π2(θ1i|x)

1

n2

n2∑
i=1

π̃1(θ2i|x)

n1π1(θ2i|x) + n2π2(θ2i|x)

Back later!
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Optimal bridge sampling (2)

Reason:

Var(B̂12)

B2
12

≈ 1

n1n2

{∫
π1(θ)π2(θ)[n1π1(θ) + n2π2(θ)]α(θ)2 dθ(∫

π1(θ)π2(θ)α(θ) dθ
)2 − 1

}

(by the δ method)

Drawback: Dependence on the unknown normalising constants
solved iteratively
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Extension to varying dimensions

When dim(Θ1) 6= dim(Θ2), e.g. θ2 = (θ1, ψ), introduction of a
pseudo-posterior density, ω(ψ|θ1, x), augmenting π1(θ1|x) into
joint distribution

π1(θ1|x)× ω(ψ|θ1, x)

on Θ2 so that

B12 =

∫
π̃1(θ1|x)α(θ1, ψ)π2(θ1, ψ|x)dθ1ω(ψ|θ1, x) dψ∫
π̃2(θ1, ψ|x)α(θ1, ψ)π1(θ1|x)dθ1 ω(ψ|θ1, x) dψ

= Eπ2

[
π̃1(θ1)ω(ψ|θ1)

π̃2(θ1, ψ)

]
=

Eϕ [π̃1(θ1)ω(ψ|θ1)/ϕ(θ1, ψ)]

Eϕ [π̃2(θ1, ψ)/ϕ(θ1, ψ)]

for any conditional density ω(ψ|θ1) and any joint density ϕ.
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Illustration for the Pima Indian dataset

Use of the MLE induced conditional of β3 given (β1, β2) as a
pseudo-posterior and mixture of both MLE approximations on β3

in bridge sampling estimate

R bridge sampling code
cova=model2$cov.unscaled

expecta=model2$coeff[,1]

covw=cova[3,3]-t(cova[1:2,3])%*%ginv(cova[1:2,1:2])%*%cova[1:2,3]

probit1=hmprobit(Niter,y,X1)

probit2=hmprobit(Niter,y,X2)

pseudo=rnorm(Niter,meanw(probit1),sqrt(covw))

probit1p=cbind(probit1,pseudo)

bfbs=mean(exp(probitlpost(probit2[,1:2],y,X1)+dnorm(probit2[,3],meanw(probit2[,1:2]),

sqrt(covw),log=T))/ (dmvnorm(probit2,expecta,cova)+dnorm(probit2[,3],expecta[3],

cova[3,3])))/ mean(exp(probitlpost(probit1p,y,X2))/(dmvnorm(probit1p,expecta,cova)+

dnorm(pseudo,expecta[3],cova[3,3])))
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Diabetes in Pima Indian women (cont’d)
Comparison of the variation of the Bayes factor approximations
based on 100× 20, 000 simulations from the prior (MC), the above
bridge sampler and the above importance sampler
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The original harmonic mean estimator

When θki ∼ πk(θ|x),

1

T

T∑
t=1

1

L(θkt|x)

is an unbiased estimator of 1/mk(x)
[Newton & Raftery, 1994]

Highly dangerous: Most often leads to an infinite variance!!!
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“The Worst Monte Carlo Method Ever”

“The good news is that the Law of Large Numbers guarantees that
this estimator is consistent ie, it will very likely be very close to the
correct answer if you use a sufficiently large number of points from
the posterior distribution.
The bad news is that the number of points required for this
estimator to get close to the right answer will often be greater
than the number of atoms in the observable universe. The even
worse news is that it’s easy for people to not realize this, and to
näıvely accept estimates that are nowhere close to the correct
value of the marginal likelihood.”

[Radford Neal’s blog, Aug. 23, 2008]
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Approximating Zk from a posterior sample

Use of the [harmonic mean] identity

Eπk
[

ϕ(θk)

πk(θk)Lk(θk)

∣∣∣∣x] =

∫
ϕ(θk)

πk(θk)Lk(θk)

πk(θk)Lk(θk)

Zk
dθk =

1

Zk

no matter what the proposal ϕ(·) is.
[Gelfand & Dey, 1994; Bartolucci et al., 2006]

Direct exploitation of the MCMC output
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Comparison with regular importance sampling

Harmonic mean: Constraint opposed to usual importance sampling
constraints: ϕ(θ) must have lighter (rather than fatter) tails than
πk(θk)Lk(θk) for the approximation

Ẑ1k = 1

/
1

T

T∑
t=1

ϕ(θ
(t)
k )

πk(θ
(t)
k )Lk(θ

(t)
k )

to have a finite variance.
E.g., use finite support kernels (like Epanechnikov’s kernel) for ϕ
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Comparison with regular importance sampling (cont’d)

Compare Ẑ1k with a standard importance sampling approximation

Ẑ2k =
1

T

T∑
t=1

πk(θ
(t)
k )Lk(θ

(t)
k )

ϕ(θ
(t)
k )

where the θ
(t)
k ’s are generated from the density ϕ(·) (with fatter

tails like t’s)
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HPD indicator as ϕ
Use the convex hull of MCMC simulations corresponding to the
10% HPD region (easily derived!) and ϕ as indicator:

ϕ(θ) =
10

T

∑
t∈HPD

Id(θ,θ(t))≤ε
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Diabetes in Pima Indian women (cont’d)
Comparison of the variation of the Bayes factor approximations
based on 100 replicas for 20, 000 simulations for a simulation from
the above harmonic mean sampler and importance samplers

Harmonic mean Importance sampling
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Approximating Zk using a mixture representation

Bridge sampling redux

Design a specific mixture for simulation [importance sampling]
purposes, with density

ϕ̃k(θk) ∝ ω1πk(θk)Lk(θk) + ϕ(θk) ,

where ϕ(·) is arbitrary (but normalised)
Note: ω1 is not a probability weight
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Approximating Z using a mixture representation (cont’d)

Corresponding MCMC (=Gibbs) sampler

At iteration t

1. Take δ(t) = 1 with probability

ω1πk(θ
(t−1)
k )Lk(θ

(t−1)
k )

/(
ω1πk(θ

(t−1)
k )Lk(θ

(t−1)
k ) + ϕ(θ

(t−1)
k )

)
and δ(t) = 2 otherwise;

2. If δ(t) = 1, generate θ
(t)
k ∼ MCMC(θ

(t−1)
k , θk) where

MCMC(θk, θ
′
k) denotes an arbitrary MCMC kernel associated

with the posterior πk(θk|x) ∝ πk(θk)Lk(θk);

3. If δ(t) = 2, generate θ
(t)
k ∼ ϕ(θk) independently
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Evidence approximation by mixtures

Rao-Blackwellised estimate

ξ̂ =
1

T

T∑
t=1

ω1πk(θ
(t)
k )Lk(θ

(t)
k )

/
ω1πk(θ

(t)
k )Lk(θ

(t)
k ) + ϕ(θ

(t)
k ) ,

converges to ω1Zk/{ω1Zk + 1}
Deduce Ẑ3k from ω1Ê3k/{ω1Ê3k + 1} = ξ̂ ie

Ê3k =

∑T
t=1 ω1πk(θ

(t)
k )Lk(θ

(t)
k )

/
ω1π(θ

(t)
k )Lk(θ

(t)
k ) + ϕ(θ

(t)
k )

∑T
t=1 ϕ(θ

(t)
k )

/
ω1πk(θ

(t)
k )Lk(θ

(t)
k ) + ϕ(θ

(t)
k )

[Bridge sampler]
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Chib’s representation

Direct application of Bayes’ theorem: given x ∼ fk(x|θk) and
θk ∼ πk(θk),

Ek = mk(x) =
fk(x|θk)πk(θk)

πk(θk|x)

Use of an approximation to the posterior

Êk = m̂k(x) =
fk(x|θ∗k)πk(θ∗k)

π̂k(θ
∗
k|x)

.
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Case of latent variables

For missing variable z as in mixture models, natural Rao-Blackwell
estimate

π̂k(θ
∗
k|x) =

1

T

T∑
t=1

πk(θ
∗
k|x, z

(t)
k ) ,

where the z
(t)
k ’s are Gibbs sampled latent variables
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Label switching

A mixture model [special case of missing variable model] is
invariant under permutations of the indices of the components.
E.g., mixtures

0.3N (0, 1) + 0.7N (2.3, 1)

and
0.7N (2.3, 1) + 0.3N (0, 1)

are exactly the same!
c© The component parameters θi are not identifiable
marginally since they are exchangeable
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Connected difficulties

1. Number of modes of the likelihood of order O(k!):
c© Maximization and even [MCMC] exploration of the

posterior surface harder

2. Under exchangeable priors on (θ,p) [prior invariant under
permutation of the indices], all posterior marginals are
identical:
c© Posterior expectation of θ1 equal to posterior expectation

of θ2
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License

Since Gibbs output does not produce exchangeability, the Gibbs
sampler has not explored the whole parameter space: it lacks
energy to switch simultaneously enough component allocations at
once
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Label switching paradox

We should observe the exchangeability of the components [label
switching] to conclude about convergence of the Gibbs sampler.
If we observe it, then we do not know how to estimate the
parameters.
If we do not, then we are uncertain about the convergence!!!
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Compensation for label switching

For mixture models, z
(t)
k usually fails to visit all configurations in a

balanced way, despite the symmetry predicted by the theory

πk(θk|x) = πk(σ(θk)|x) =
1

k!

∑
σ∈S

πk(σ(θk)|x)

for all σ’s in Sk, set of all permutations of {1, . . . , k}.
Consequences on numerical approximation, biased by an order k!
Recover the theoretical symmetry by using

π̃k(θ
∗
k|x) =

1

T k!

∑
σ∈Sk

T∑
t=1

πk(σ(θ∗k)|x, z
(t)
k ) .

[Berkhof, Mechelen, & Gelman, 2003]
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Galaxy dataset
n = 82 galaxies as a mixture of k normal distributions with both
mean and variance unknown.

[Roeder, 1992]
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Galaxy dataset (k)
Using only the original estimate, with θ∗k as the MAP estimator,

log(m̂k(x)) = −105.1396

for k = 3 (based on 103 simulations), while introducing the
permutations leads to

log(m̂k(x)) = −103.3479

Note that
−105.1396 + log(3!) = −103.3479

k 2 3 4 5 6 7 8

mk(x) -115.68 -103.35 -102.66 -101.93 -102.88 -105.48 -108.44

Estimations of the marginal likelihoods by the symmetrised Chib’s
approximation (based on 105 Gibbs iterations and, for k > 5, 100
permutations selected at random in Sk).

[Lee, Marin, Mengersen & Robert, 2008]
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Case of the probit model

For the completion by z,

π̂(θ|x) =
1

T

∑
t

π(θ|x, z(t))

is a simple average of normal densities

R Bridge sampling code
gibbs1=gibbsprobit(Niter,y,X1)

gibbs2=gibbsprobit(Niter,y,X2)

bfchi=mean(exp(dmvlnorm(t(t(gibbs2$mu)-model2$coeff[,1]),mean=rep(0,3),

sigma=gibbs2$Sigma2)-probitlpost(model2$coeff[,1],y,X2)))/

mean(exp(dmvlnorm(t(t(gibbs1$mu)-model1$coeff[,1]),mean=rep(0,2),

sigma=gibbs1$Sigma2)-probitlpost(model1$coeff[,1],y,X1)))
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Diabetes in Pima Indian women (cont’d)
Comparison of the variation of the Bayes factor approximations
based on 100 replicas for 20, 000 simulations for a simulation from
the above Chib’s and importance samplers
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The Savage–Dickey ratio

Special representation of the Bayes factor used for simulation
Given a test H0 : θ = θ0 in a model f(x|θ, ψ) with a nuisance
parameter ψ, under priors π0(ψ) and π1(θ, ψ) such that

π1(ψ|θ0) = π0(ψ)

then

B01 =
π1(θ0|x)

π1(θ0)
,

with the obvious notations

π1(θ) =

∫
π1(θ, ψ)dψ , π1(θ|x) =

∫
π1(θ, ψ|x)dψ ,

[Dickey, 1971; Verdinelli & Wasserman, 1995]
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Measure-theoretic difficulty

The representation depends on the choice of versions of conditional
densities:

B01 =

∫
π0(ψ)f(x|θ0, ψ) dψ∫

π1(θ, ψ)f(x|θ, ψ) dψdθ
[by definition]

=

∫
π1(ψ|θ0)f(x|θ0, ψ) dψ π1(θ0)∫
π1(θ, ψ)f(x|θ, ψ) dψdθ π1(θ0)

[specific version of π1(ψ|θ0)]

=

∫
π1(θ0, ψ)f(x|θ0, ψ) dψ

m1(x)π1(θ0)
[specific version of π1(θ0, ψ)]

=
π1(θ0|x)

π1(θ0)

c© Dickey’s (1971) condition is not a condition
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Similar measure-theoretic difficulty

Verdinelli-Wasserman extension:

B01 =
π1(θ0|x)

π1(θ0)
Eπ1(ψ|x,θ0,x)

[
π0(ψ)

π1(ψ|θ0)

]
depends on similar choices of versions

Monte Carlo implementation relies on continuous versions of all
densities without making mention of it

[Chen, Shao & Ibrahim, 2000]
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Computational implementation

Starting from the (new) prior

π̃1(θ, ψ) = π1(θ)π0(ψ)

define the associated posterior

π̃1(θ, ψ|x) = π0(ψ)π1(θ)f(x|θ, ψ)
/
m̃1(x)

and impose
π̃1(θ0|x)

π0(θ0)
=

∫
π0(ψ)f(x|θ0, ψ) dψ

m̃1(x)

to hold.
Then

B01 =
π̃1(θ0|x)

π1(θ0)

m̃1(x)

m1(x)



Markov Chain Monte Carlo Methods

Monte Carlo Integration

Bayesian importance sampling

First ratio

If (θ(1), ψ(1)), . . . , (θ(T ), ψ(T )) ∼ π̃(θ, ψ|x), then

1

T

∑
t

π̃1(θ0|x, ψ(t))

converges to π̃1(θ0|x) (if the right version is used in θ0).
When π̃1(θ0|x, ψ unavailable, replace with

1

T

T∑
t=1

π̃1(θ0|x, z(t), ψ(t))
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Bridge revival (1)

Since m̃1(x)/m1(x) is unknown, apparent failure!
Use of the identity

Eπ̃1(θ,ψ|x)

[
π1(θ, ψ)f(x|θ, ψ)

π0(ψ)π1(θ)f(x|θ, ψ)

]
= Eπ̃1(θ,ψ|x)

[
π1(ψ|θ)
π0(ψ)

]
=
m1(x)

m̃1(x)

to (biasedly) estimate m̃1(x)/m1(x) by

T
/ T∑
t=1

π1(ψ(t)|θ(t))

π0(ψ(t))

based on the same sample from π̃1.
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Bridge revival (2)
Alternative identity

Eπ1(θ,ψ|x)

[
π0(ψ)π1(θ)f(x|θ, ψ)

π1(θ, ψ)f(x|θ, ψ)

]
= Eπ1(θ,ψ|x)

[
π0(ψ)

π1(ψ|θ)

]
=
m̃1(x)

m1(x)

suggests using a second sample (θ̄(1), ψ̄(1), z(1)), . . . ,
(θ̄(T ), ψ̄(T ), z(T )) ∼ π1(θ, ψ|x) and

1

T

T∑
t=1

π0(ψ̄(t))

π1(ψ̄(t)|θ̄(t))

Resulting estimate:

B̂01 =
1

T

∑
t π̃1(θ0|x, z(t), ψ(t))

π1(θ0)

1

T

T∑
t=1

π0(ψ̄(t))

π1(ψ̄(t)|θ̄(t))
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Diabetes in Pima Indian women (cont’d)
Comparison of the variation of the Bayes factor approximations
based on 100 replicas for 20, 000 simulations for a simulation from
the above importance, Chib’s, Savage–Dickey’s and bridge
samplers
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Nested sampling: Goal

Skilling’s (2007) technique using the one-dimensional
representation:

E = Eπ[L(θ)] =

∫ 1

0
ϕ(x) dx

with
ϕ−1(l) = P π(L(θ) > l).

Note; ϕ(·) is intractable in most cases.
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Nested sampling: First approximation

Approximate E by a Riemann sum:

Ê =

j∑
i=1

(xi−1 − xi)ϕ(xi)

where the xi’s are either:

I deterministic: xi = e−i/N

I or random:

x0 = 1, xi+1 = tixi, ti ∼ Be(N, 1)

so that E[log xi] = −i/N .
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Extraneous white noise

Take

E =

∫
e−θ dθ =

∫
1

δ
e−(1−δ)θ e−δθ = Eδ

[
1

δ
e−(1−δ)θ

]
Ê =

1

N

N∑
i=1

δ−1 e−(1−δ)θi(xi−1 − xi) , θi ∼ E(δ) I(θi ≤ θi−1)

N deterministic random
50 4.64 10.5

4.65 10.5
100 2.47 4.9

2.48 5.02
500 .549 1.01

.550 1.14

Comparison of variances and MSEs
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Nested sampling: Second approximation

Replace (intractable) ϕ(xi) by ϕi, obtained by

Nested sampling

Start with N values θ1, . . . , θN sampled from π
At iteration i,

1. Take ϕi = L(θk), where θk is the point with smallest
likelihood in the pool of θi’s

2. Replace θk with a sample from the prior constrained to
L(θ) > ϕi: the current N points are sampled from prior
constrained to L(θ) > ϕi.
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Nested sampling: Third approximation

Iterate the above steps until a given stopping iteration j is
reached: e.g.,

I observe very small changes in the approximation Ẑ;

I reach the maximal value of L(θ) when the likelihood is
bounded and its maximum is known;

I truncate the integral E at level ε, i.e. replace∫ 1

0
ϕ(x) dx with

∫ 1

ε
ϕ(x) dx
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Approximation error

Error = Ê− E

=

j∑
i=1

(xi−1 − xi)ϕi −
∫ 1

0
ϕ(x) dx = −

∫ ε

0
ϕ(x) dx (Truncation Error)

+

[
j∑
i=1

(xi−1 − xi)ϕ(xi)−
∫ 1

ε
ϕ(x) dx

]
(Quadrature Error)

+

[
j∑
i=1

(xi−1 − xi) {ϕi − ϕ(xi)}

]
(Stochastic Error)

[Dominated by Monte Carlo!]
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A CLT for the Stochastic Error

The (dominating) stochastic error is OP (N−1/2):

N1/2 {Stochastic Error} D→ N (0, V )

with

V = −
∫
s,t∈[ε,1]

sϕ′(s)tϕ′(t) log(s ∨ t) ds dt.

[Proof based on Donsker’s theorem]

The number of simulated points equals the number of iterations j,
and is a multiple of N : if one stops at first iteration j such that
e−j/N < ε, then: j = Nd− log εe.
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Curse of dimension

For a simple Gaussian-Gaussian model of dimension dim(θ) = d,
the following 3 quantities are O(d):

1. asymptotic variance of the NS estimator;

2. number of iterations (necessary to reach a given truncation
error);

3. cost of one simulated sample.

Therefore, CPU time necessary for achieving error level e is

O(d3/e2)
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Sampling from constr’d priors

Exact simulation from the constrained prior is intractable in most
cases!

Skilling (2007) proposes to use MCMC, but:

I this introduces a bias (stopping rule).

I if MCMC stationary distribution is unconst’d prior, more and
more difficult to sample points such that L(θ) > l as l
increases.

If implementable, then slice sampler can be devised at the same
cost!
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A IS variant of nested sampling

Consider instrumental prior π̃ and likelihood L̃, weight function

w(θ) =
π(θ)L(θ)

π̃(θ)L̃(θ)

and weighted NS estimator

Ê =

j∑
i=1

(xi−1 − xi)ϕiw(θi).

Then choose (π̃, L̃) so that sampling from π̃ constrained to
L̃(θ) > l is easy; e.g. N (c, Id) constrained to ‖c− θ‖ < r.
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Benchmark: Target distribution

Posterior distribution on (µ, σ) associated with the mixture

pN (0, 1) + (1− p)N (µ, σ) ,

when p is known
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Experiment

I n observations with
µ = 2 and σ = 3/2,

I Use of a uniform prior
both on (−2, 6) for µ
and on (.001, 16) for
log σ2.

I occurrences of posterior
bursts for µ = xi

I computation of the
various estimates of E
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Experiment (cont’d)

MCMC sample for n = 16
observations from the mixture.

Nested sampling sequence
with M = 1000 starting points.
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Experiment (cont’d)

MCMC sample for n = 50
observations from the mixture.

Nested sampling sequence
with M = 1000 starting points.
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Comparison

Monte Carlo and MCMC (=Gibbs) outputs based on T = 104

simulations and numerical integration based on a 850× 950 grid in
the (µ, σ) parameter space.
Nested sampling approximation based on a starting sample of
M = 1000 points followed by at least 103 further simulations from
the constr’d prior and a stopping rule at 95% of the observed
maximum likelihood.
Constr’d prior simulation based on 50 values simulated by random
walk accepting only steps leading to a lik’hood higher than the
bound
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Comparison (cont’d)

Graph based on a sample of 10 observations for µ = 2 and
σ = 3/2 (150 replicas).

Graph based on a sample of 50 observations for µ = 2 and
σ = 3/2 (150 replicas).

Graph based on a sample of 100 observations for µ = 2 and
σ = 3/2 (150 replicas).
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Comparison (cont’d)

Nested sampling gets less reliable as sample size increases
Most reliable approach is mixture Ê3 although harmonic solution
Ê1 close to Chib’s solution [taken as golden standard]
Monte Carlo method Ê2 also producing poor approximations to E
(Kernel φ used in Ê2 is a t non-parametric kernel estimate with
standard bandwidth estimation.)
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Notions on Markov Chains
Basics
Irreducibility
Transience and Recurrence
Invariant measures
Ergodicity and convergence
Limit theorems
Quantitative convergence rates
Coupling
Renewal and CLT
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Basics

Definition (Markov chain)

A sequence of random variables whose distribution evolves over
time as a function of past realizations

Chain defined through its transition kernel, a function K defined
on X ×B(X ) such that

I ∀x ∈X , K(x, ·) is a probability measure;

I ∀A ∈ B(X ), K(·, A) is measurable.
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no discrete

• When X is a discrete (finite or denumerable) set, the
transition kernel simply is a (transition) matrix K with
elements

Pxy = Pr(Xn = y|Xn−1 = x) , x, y ∈X

Since, for all x ∈X , K(x, ·) is a probability, we must have

Pxy ≥ 0 and K(x,X ) =
∑
y∈X

Pxy = 1

The matrix K is referred to as a Markov transition matrix
or a stochastic matrix
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• In the continuous case, the kernel also denotes the
conditional density K(x, x′) of the transition K(x, ·)

Pr(X ∈ A|x) =

∫
A
K(x, x′)dx′.

Then, for any bounded φ, we may define

Kφ(x) = K(x, φ) =

∫
X

K(x, dy)φ(y).

Note that

|Kφ(x)| ≤
∫

X
K(x, dy)|φ(y)| ≤ |φ|∞ = sup

x∈X
|φ(x)|.

We may also associate to a probability measure µ the measure
µK, defined as

µK(A) =

∫
X
µ(dx)K(x,A).
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Markov chains

skip definition

Given a transition kernel K, a sequence X0, X1, . . . , Xn, . . . of
random variables is a Markov chain denoted by (Xn), if, for any
t, the conditional distribution of Xt given xt−1, xt−2, . . . , x0 is the
same as the distribution of Xt given xt−1. That is,

Pr(Xk+1 ∈ A|x0, x1, x2, . . . , xk) = Pr(Xk+1 ∈ A|xk)

=

∫
A
K(xk, dx)
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Note that the entire structure of the chain only depends on

◦ The transition function K

◦ The initial state x0 or initial distribution X0 ∼ µ
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Example (Random walk)

The normal random walk is the kernel K(x, ·) associated with the
distribution

Np(x, τ2Ip)

which means
Xt+1 = Xt + τεt

εt being an iid additional noise
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y

100 consecutive realisations of the random walk in R2 with
τ = 1
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bypass remarks

On a discrete state-space X = {x0, x1, . . .},
I A function φ on a discrete state space is uniquely defined by

the (column) vector φ = (φ(x0), φ(x1), . . . , )T and

Kφ(x) =
∑
y∈X

Pxyφ(y)

can be interpreted as the xth component of the product of
the transition matrix K and of the vector φ.

I A probability distribution on P(X ) is defined as a (row)
vector µ = (µ(x0), µ(x1), . . .) and the probability distribution
µK is defined, for each y ∈X as

µK({y}) =
∑
x∈X

µ({x})Pxy

yth component of the product of the vector µ and of the
transition matrix K.
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Composition of kernels

Let Q1 and Q2 be two probability kernels. Define, for any x ∈X
and any A ∈ B(X ) the product of kernels Q1Q2 as

Q1Q2(x,A) =

∫
X

Q1(x, dy)Q2(y,A)

When the state space X is discrete, the product of Markov kernels
coincides with the product of matrices Q1 ×Q2.
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Irreducibility

Irreducibility is one measure of the sensitivity of the Markov chain
to initial conditions
It leads to a guarantee of convergence for MCMC algorithms

Definition (Irreducibility)

In the discrete case, the chain is irreducible if all states
communicate, namely if

Px(τy <∞) > 0 , ∀x, y ∈X ,

τy being the first (positive) time y is visited
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Irreducibility for a continuous chain

In the continuous case, the chain is ϕ-irreducible for some measure
ϕ if for some n,

Kn(x,A) > 0

I for all x ∈X

I for every A ∈ B(X ) with ϕ(A) > 0
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Minoration condition

Assume there exist a probability measure ν and ε > 0 such that,
for all x ∈X and all A ∈ B(X ),

K(x,A) ≥ εν(A)

This is called a minoration condition.
When K is a Markov chain on a discrete state space, this is
equivalent to saying that Pxy > 0 for all x, y ∈X .
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Small sets

Definition (Small set)

If there exist C ∈ B(X ), ϕ(C) > 0, a probability measure ν and
ε > 0 such that, for all x ∈ C and all A ∈ B(X ),

K(x,A) ≥ εν(A)

C is called a small set

For discrete state space, atoms are small sets.
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Towards further stability

• Irreducibility: every set A has a chance to be visited by the
Markov chain (Xn)

• This property is too weak to ensure that the trajectory of
(Xn) will enter A often enough.

• A Markov chain must enjoy good stability properties to
guarantee an acceptable approximation of the simulated
model.

◦ Formalizing this stability leads to different notions of
recurrence

◦ For discrete chains, the recurrence of a state equivalent to
probability one of sure return.

◦ Always satisfied for irreducible chains on finite spaces
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Transience and Recurrence

In a finite state space X , denote the average number of visits to a
state ω by

ηω =

∞∑
i=1

Iω(Xi)

If Eω[ηω] =∞, the state is recurrent
If Eω[ηω] <∞, the state is transient
For irreducible chains, recurrence/transience is property of the
chain, not of a particular state
Similar definitions for the continuous case.
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Harris recurrence

Stronger form of recurrence:

Definition (Harris recurrence)

A set A is Harris recurrent if

Px(ηA =∞) = 1 for all x ∈ A.

The chain (Xn) is Ψ–Harris recurrent if it is

◦ ψ–irreducible

◦ for every set A with ψ(A) > 0, A is Harris recurrent.

Note that

Px(ηA =∞) = 1 implies Ex[ηA] =∞
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Invariant measures

Stability increases for the chain (Xn) if marginal distribution of Xn

independent of n
Requires the existence of a probability distribution π such that

Xn+1 ∼ π if Xn ∼ π

Definition (Invariant measure)

A measure π is invariant for the transition kernel K(·, ·) if

π(B) =

∫
X

K(x,B) π(dx) , ∀B ∈ B(X ) .
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Stability properties and invariance

◦ The chain is positive recurrent if π is a probability measure.

◦ Otherwise it is null recurrent or transient

• If π probability measure, π also called stationary distribution
since

X0 ∼ π implies that Xn ∼ π for every n

• The stationary distribution is unique
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Insights

no time for that!

Invariant probability measures are important not merely be-
cause they define stationary processes, but also because
they turn out to be the measures which define the long-
term or ergodic behavior of the chain.

To understand why, consider Pµ(Xn ∈ ·) for a starting distribution µ. If
a limiting measure γµ exists such as

Pµ(Xn ∈ A)→ γµ(A)

for all A ∈ B(X ), then
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γµ(A) = lim
n→∞

∫
µ(dx)Pn(x,A)

= lim
n→∞

∫
X

∫
Pn−1(x, dw)K(w,A)

=

∫
X

γµ(dw)K(w,A)

since setwise convergence of
∫
µPn(x, ·) implies convergence of integrals of

bounded measurable functions. Hence, if a limiting distribution exists, it is an

invariant probability measure; and obviously, if there is a unique invariant

probability measure, the limit γµ will be independent of µ whenever it exists.
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Ergodicity and convergence

We finally consider: to what is the chain converging?
The invariant distribution π is a natural candidate for the limiting
distribution
A fundamental property is ergodicity, or independence of initial
conditions. In the discrete case, a state ω is ergodic if

lim
n→∞

|Kn(ω, ω)− π(ω)| = 0 .
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Norm and convergence

In general , we establish convergence using the total variation norm

‖µ1 − µ2‖TV = sup
A
|µ1(A)− µ2(A)|

and we want ∥∥∥∥∫ Kn(x, ·)µ(dx)− π
∥∥∥∥

TV

= sup
A

∣∣∣∣∫ Kn(x,A)µ(dx)− π(A)

∣∣∣∣
to be small. skip minoration TV
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Total variation distance and minoration

Lemma

Let µ and µ′ be two probability measures. Then,

1− inf

{∑
i

µ(Ai) ∧ µ′(Ai)

}
= ‖µ− µ′‖TV.

where the infimum is taken over all finite partitions (Ai)i of X .
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Total variation distance and minoration (2)

Assume that there exist a probability ν and ε > 0 such that, for all
A ∈ B(X ) we have

µ(A) ∧ µ′(A) ≥ εν(A).

Then, for all I and all partitions A1, A2, . . ., AI ,∑
i=1

µ(Ai) ∧ µ′(Ai) ≥ ε

and the previous result thus implies that

‖µ− µ′‖TV ≤ (1− ε).
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Harris recurrence and ergodicity

Theorem

If (Xn) Harris positive recurrent and aperiodic, then

lim
n→∞

∥∥∥∥∫ Kn(x, ·)µ(dx)− π
∥∥∥∥
TV

= 0

for every initial distribution µ.

We thus take “Harris positive recurrent and aperiodic” as
equivalent to “ergodic”

[Meyn & Tweedie, 1993]
Convergence in total variation implies

lim
n→∞

|Eµ[h(Xn)]− Eπ[h(X)]| = 0

for every bounded function h. no detail of convergence
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Convergences

There are difference speeds of convergence

◦ ergodic (fast enough)

◦ geometrically ergodic (faster)

◦ uniformly ergodic (fastest)
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Geometric ergodicity

A φ-irreducible aperiodic Markov kernel P with invariant
distribution π is geometrically ergodic if there exist V ≥ 1, and
constants ρ < 1, R <∞ such that (n ≥ 1)

‖Pn(x, .)− π(.)‖V ≤ RV (x)ρn ,

on {V <∞} which is full and absorbing.
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Geometric ergodicity implies a lot of important results

I CLT for additive functionals n−1/2
∑
g(Xk) and functions

|g| < V

I Rosenthal’s type inequalities

Ex

∣∣∣∣∣
n∑
k=1

g(Xk)

∣∣∣∣∣
p

≤ C(p)np/2, |g|p ≤ 2

I exponential inequalities (for bounded functions and α small
enough)

Ex

{
exp

(
α

n∑
k=1

g(Xk)

)}
<∞
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Minoration condition and uniform ergodicity

Under the minoration condition, the kernel K is thus contractant
and standard results in functional analysis shows the existence and
the unicity of a fixed point π. The previous relation implies that,
for all x ∈X .

‖Pn(x, ·)− π‖TV ≤ (1− ε)n

Such Markov chains are called uniformly ergodic.
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Uniform ergodicity

Theorem (S&n ergodicity)

The following conditions are equivalent:

I (Xn)n is uniformly ergodic,

I there exist ρ < 1 and R <∞ such that, for all x ∈X ,

‖Pn(x, ·)− π‖TV ≤ Rρn ,

I for some n > 0,

sup
x∈X

‖Pn(x, ·)− π(·)‖TV < 1.

[Meyn and Tweedie, 1993]
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Limit theorems

Ergodicity determines the probabilistic properties of average
behavior of the chain.
But also need of statistical inference, made by induction from the
observed sample.
If ‖Pnx − π‖ close to 0, no direct information about

Xn ∼ Pnx

c© We need LLN’s and CLT’s!!!
Classical LLN’s and CLT’s not directly applicable due to:

◦ Markovian dependence structure between the observations Xi

◦ Non-stationarity of the sequence
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The Theorem

Theorem (Ergodic Theorem)

If the Markov chain (Xn) is Harris recurrent, then for any function
h with E|h| <∞,

lim
n→∞

1

n

∑
i

h(Xi) =

∫
h(x)dπ(x),
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Central Limit Theorem

To get a CLT, we need more assumptions. skip conditions and results

For MCMC, the easiest is

Definition (reversibility)

A Markov chain (Xn) is reversible if for
all n

Xn+1|Xn+2 = x ∼ Xn+1|Xn = x

The direction of time does not matter

’θθ->P( )

P( )θ’ θ->

θ θ’

[Green, 1995]
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Limit theorems

The CLT

Theorem

If the Markov chain (Xn) is Harris recurrent and reversible,

1√
N

(
N∑
n=1

(h(Xn)− Eπ[h])

)
L−→ N (0, γ2

h) .

where

0 < γ2
h = Eπ[h

2
(X0)]

+2

∞∑
k=1

Eπ[h(X0)h(Xk)] < +∞.

[Kipnis & Varadhan, 1986]
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Quantitative convergence rates

skip detailed results

Let P a Markov transition kernel on (X ,B(X )), with P positive
recurrent and π its stationary distribution
Convergence rate Determine, from the kernel, a sequence
B(ν, n), such that

‖νPn − π‖V ≤ B(ν, n)

where V : X → [1,∞) and for any signed measure µ,

‖µ‖V = sup
|φ|≤V

|µ(φ)|
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Practical purposes?

In the 90’s, a wealth of contributions on quantitative bounds
triggered by MCMC algorithms to answer questions like: what is
the appropriate burn in? or how long should the sampling continue
after burn in?

[Douc, Moulines and Rosenthal, 2001]

[Jones and Hobert, 2001]
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Tools at hand

For MCMC algorithms, kernels are “explicitly” known.
Type of quantities (more or less directly) available:

I Minoration constants

Ks(x,A) ≥ εν(A), for all x ∈ C,

I Foster-Lyapunov Drift conditions,

KV ≤ λV + bIC

and goal is to obtain a bound depending explicitly upon ε, λ, b,
&tc...
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Coupling

Coupling
skip coupling

If X ∼ µ and X ′ ∼ µ′ and µ ∧ µ′ ≥ εν, one can construct two
random variables X̃ and X̃ ′ such that

X̃ ∼ µ, X̃ ′ ∼ µ′ and X̃ = X̃ ′ with probability ε

The basic coupling construction

I with probability ε, draw Z according to ν and set
X̃ = X̃ ′ = Z.

I with probability 1− ε, draw X̃ and X̃ ′ under distributions

(µ− εν)/(1− ε) and (µ′ − εν)/(1− ε),

respectively.

[Thorisson, 2000]
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Coupling

Coupling inequality

X,X ′ r.v.’s with probability distribution K(x, .) and K(x′, .),
respectively, can be coupled with probability ε if:

K(x, ·) ∧K(x′, ·) ≥ ενx,x′(.)

where νx,x′ is a probability measure, or, equivalently,

‖K(x, ·)−K(x′, ·)‖TV ≤ (1− ε)

Define an ε-coupling set as a set C̄ ⊂X ×X satisfying :

∀(x, x′) ∈ C̄, ∀A ∈ B(X ), K(x,A) ∧K(x′, A) ≥ ενx,x′(A)
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Coupling

Small set and coupling sets

C ⊆X small set if there exist ε > 0 and a probability measure ν
such that, for all A ∈ B(X )

K(x,A) ≥ εν(A), ∀x ∈ C. (3)

Small sets always exist when the MC is ϕ-irreducible
[Jain and Jamieson, 1967]

For MCMC kernels, small sets in general easy to find.
If C is a small set, then C̄ = C × C is a coupling set:

∀(x, x′) ∈ C̄,∀A ∈ B(X ), K(x,A) ∧K(x′, A) ≥ εν(A).
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Coupling for Markov chains

P̄ Markov transition kernel on X ×X such that, for all
(x, x′) 6∈ C̄ (where C̄ is an ε-coupling set) and all A ∈ B(X ) :

P̄ (x, x′;A×X ) = K(x,A) and P̄ (x, x′; X ×A) = K(x′, A)

For example,

I for (x, x′) 6∈ C̄, P̄ (x, x′;A×A′) = K(x,A)K(x′, A′).

I For all (x, x′) ∈ C̄ and all A,A′ ∈ B(X ), define the residual
kernel

R̄(x, x′;A×X ) = (1− ε)−1(K(x,A)− ενx,x′(A))

R̄(x, x′; X ×A′) = (1− ε)−1(K(x′, A)− ενx,x′(A′)).
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Coupling algorithm

I Initialisation Let X0 ∼ ξ and X ′0 ∼ ξ′ and set d0 = 0.

I After coupling If dn = 1, then draw Xn+1 ∼ K(Xn, ·), and
set X ′n+1 = Xn+1.

I Before coupling If dn = 0 and (Xn, X
′
n) ∈ C̄,

I with probability ε, draw Xn+1 = X ′n+1 ∼ νXn,X′n and set
dn+1 = 1.

I with probability 1− ε, draw (Xn+1, X
′
n+1) ∼ R̄(Xn, X

′
n; ·)

and set dn+1 = 0.
I If dn = 0 and (Xn, X

′
n) 6∈ C̄, then draw

(Xn+1, X
′
n+1) ∼ P̄ (Xn, X

′
n; ·).

(Xn, X
′
n, dn) [where dn is the bell variable which indicates

whether the chains have coupled or not] is a Markov chain on
(X ×X × {0, 1}).
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Coupling

Coupling inequality (again!)

Define the coupling time T as

T = inf{k ≥ 1, dk = 1}

Coupling inequality

sup
A
|ξP k(A)− ξ′P k(A)| ≤ Pξ,ξ′,0[T > k]

[Pitman, 1976; Lindvall, 1992]
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Coupling

Drift conditions

To exploit the coupling construction, we need to control the hitting
time
Moments of the return time to a set C are most often controlled
using Foster-Lyapunov drift condition:

PV ≤ λV + bIC , V ≥ 1

Mk = λ−kV (Xk)I(τC ≥ k), k ≥ 1 is a supermartingale and thus

Ex[λ−τC ] ≤ V (x) + bλ−1IC(x).

Conversely, if there exists a set C such that Ex[λ−τC ] <∞ for all
x (in a full and absorbing set), then there exists a drift function
verifying the Foster-Lyapunov conditions.

[Meyn and Tweedie, 1993]
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If the drift condition is imposed directly on the joint transition
kernel P̄ , there exist V ≥ 1, 0 < λ < 1 and a set C̄ such that :

P̄ V (x, x′) ≤ λV (x, x′) ∀(x, x′) 6∈ C̄

When P̄ (x, x′;A×A′) = K(x,A)K(x′, A′), one may consider

V̄ (x, x′) = (1/2)
(
V (x) + V (x′)

)
where V drift function for P (but not necessarily the best choice)
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Coupling

Explicit bound

Theorem

For any distributions ξ and ξ′, and any j ≤ k, then:

‖ξP k(·)− ξ′P k(·)‖TV ≤ (1− ε)j + λkBj−1 Eξ,ξ′,0[V (X0, X
′
0)]

where
B = 1 ∨ λ−1(1− ε) sup

C̄

RV.

[DMR,2001]
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Renewal and CLT

Renewal and CLT

Given a Markov chain (Xn)n, how good an approximation of

I =

∫
g(x)π(x)dx

is

gn :=
1

n

n−1∑
i=0

g(Xi) ?

Standard MC if CLT

√
n (gn − Eπ[g(X)])

d→ N (0, γ2
g )

and there exists an easy-to-compute, consistent estimate of γ2
g ...



Markov Chain Monte Carlo Methods

Notions on Markov Chains

Renewal and CLT

Minoration

skip construction

Assume that the kernel density K satisfies, for some density q(·),
ε ∈ (0, 1) and a small set C ⊆ X ,

K(y|x) ≥ ε q(y) for all y ∈ X and x ∈ C

Then split K into a mixture

K(y|x) = ε q(y) + (1− ε)R(y|x)

where R is residual kernel
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Split chain

Let δ0, δ1, δ2, . . . be iid B(ε). Then the split chain

{(X0, δ0), (X1, δ1), (X2, δ2), . . . }

is such that, when Xi ∈ C, δi determines Xi+1:

Xi+1 ∼

{
q(x) if δi = 1,

R(x|Xi) otherwise

[Regeneration] When (Xi, δi) ∈ C × {1}, Xi+1 ∼ q



Markov Chain Monte Carlo Methods

Notions on Markov Chains

Renewal and CLT

Renewals
For X0 ∼ q and R successive renewals, define by τ1 < . . . < τR the
renewal times.
Then

√
R
(
gτR − Eπ[g(X)]

)
=

√
R

N

[
1

R

R∑
t=1

(St −Nt Eπ[g(X)])

]

where Nt length of the t th tour, and St sum of the g(Xj)’s over
the t th tour.
Since (Nt, St) are iid and Eq[St −Nt Eπ[g(X)]] = 0, if Nt and St
have finite 2nd moments,

I
√
R
(
gτR − Eπg

) d→ N (0, γ2
g )

I there is a simple, consistent estimator of γ2
g

[Mykland & al., 1995; Robert, 1995]
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Moment conditions

We need to show that, for the minoration condition, Eq[N
2
1 ] and

Eq[S
2
1 ] are finite.

If

1. the chain is geometrically ergodic, and

2. Eπ[|g|2+α] <∞ for some α > 0,

then Eq[N
2
1 ] <∞ and Eq[S

2
1 ] <∞.

[Hobert & al., 2002]

Note that drift + minoration ensures geometric ergodicity
[Rosenthal, 1995; Roberts & Tweedie, 1999]
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The Metropolis-Hastings Algorithm

Motivation and leading example

Random variable generation

Monte Carlo Integration

Notions on Markov Chains

The Metropolis-Hastings Algorithm
Monte Carlo Methods based on Markov Chains
The Metropolis–Hastings algorithm
A collection of Metropolis-Hastings algorithms
Extensions

The Gibbs Sampler

Further Topics
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Monte Carlo Methods based on Markov Chains

Running Monte Carlo via Markov Chains

It is not necessary to use a sample from the distribution f to
approximate the integral

I =

∫
h(x)f(x)dx ,

We can obtain X1, . . . , Xn ∼ f (approx) without directly
simulating from f , using an ergodic Markov chain with
stationary distribution f
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Monte Carlo Methods based on Markov Chains

Running Monte Carlo via Markov Chains (2)

Idea

For an arbitrary starting value x(0), an ergodic chain (X(t)) is
generated using a transition kernel with stationary distribution f

I Insures the convergence in distribution of (X(t)) to a random
variable from f .

I For a “large enough” T0, X(T0) can be considered as
distributed from f

I Produce a dependent sample X(T0), X(T0+1), . . ., which is
generated from f , sufficient for most approximation purposes.

Problem: How can one build a Markov chain with a given
stationary distribution?
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The Metropolis–Hastings algorithm

The Metropolis–Hastings algorithm

Basics
The algorithm uses the objective (target) density

f

and a conditional density
q(y|x)

called the instrumental (or proposal) distribution
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The Metropolis–Hastings algorithm

The MH algorithm

Algorithm (Metropolis–Hastings)

Given x(t),

1. Generate Yt ∼ q(y|x(t)).

2. Take

X(t+1) =

{
Yt with prob. ρ(x(t), Yt),

x(t) with prob. 1− ρ(x(t), Yt),

where

ρ(x, y) = min

{
f(y)

f(x)

q(x|y)

q(y|x)
, 1

}
.
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The Metropolis–Hastings algorithm

Features

I Independent of normalizing constants for both f and q(·|x)
(ie, those constants independent of x)

I Never move to values with f(y) = 0

I The chain (x(t))t may take the same value several times in a
row, even though f is a density wrt Lebesgue measure

I The sequence (yt)t is usually not a Markov chain
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The Metropolis–Hastings algorithm

Convergence properties

1. The M-H Markov chain is reversible, with
invariant/stationary density f since it satisfies the detailed
balance condition

f(y)K(y, x) = f(x)K(x, y)

2. As f is a probability measure, the chain is positive recurrent

3. If

Pr

[
f(Yt) q(X

(t)|Yt)
f(X(t)) q(Yt|X(t))

≥ 1

]
< 1. (1)

that is, the event {X(t+1) = X(t)} is possible, then the chain
is aperiodic
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The Metropolis–Hastings algorithm

Convergence properties (2)

4. If
q(y|x) > 0 for every (x, y), (2)

the chain is irreducible

5. For M-H, f -irreducibility implies Harris recurrence

6. Thus, for M-H satisfying (1) and (2)
(i) For h, with Ef |h(X)| <∞,

lim
T→∞

1

T

T∑
t=1

h(X(t)) =

∫
h(x)df(x) a.e. f.

(ii) and

lim
n→∞

∥∥∥∥∫ Kn(x, ·)µ(dx)− f
∥∥∥∥
TV

= 0

for every initial distribution µ, where Kn(x, ·) denotes the
kernel for n transitions.
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A collection of Metropolis-Hastings algorithms

The Independent Case

The instrumental distribution q is independent of X(t), and is
denoted g by analogy with Accept-Reject.

Algorithm (Independent Metropolis-Hastings)

Given x(t),

a Generate Yt ∼ g(y)

b Take

X(t+1) =

Yt with prob. min

{
f(Yt) g(x(t))

f(x(t)) g(Yt)
, 1

}
,

x(t) otherwise.
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A collection of Metropolis-Hastings algorithms

Properties
The resulting sample is not iid but there exist strong convergence
properties:

Theorem (Ergodicity)

The algorithm produces a uniformly ergodic chain if there exists a
constant M such that

f(x) ≤Mg(x) , x ∈ supp f.

In this case,

‖Kn(x, ·)− f‖TV ≤
(

1− 1

M

)n
.

[Mengersen & Tweedie, 1996]
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Example (Noisy AR(1))

Hidden Markov chain from a regular AR(1) model,

xt+1 = ϕxt + εt+1 εt ∼ N (0, τ2)

and observables
yt|xt ∼ N (x2

t , σ
2)

The distribution of xt given xt−1, xt+1 and yt is

exp
−1

2τ2

{
(xt − ϕxt−1)2 + (xt+1 − ϕxt)2 +

τ2

σ2
(yt − x2

t )
2

}
.
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A collection of Metropolis-Hastings algorithms

Example (Noisy AR(1) too)

Use for proposal the N (µt, ω
2
t ) distribution, with

µt = ϕ
xt−1 + xt+1

1 + ϕ2
and ω2

t =
τ2

1 + ϕ2
.

Ratio
π(x)/qind(x) = exp−(yt − x2

t )
2/2σ2

is bounded
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A collection of Metropolis-Hastings algorithms

(top) Last 500 realisations of the chain {Xk}k out of 10, 000
iterations; (bottom) histogram of the chain, compared with
the target distribution.



Markov Chain Monte Carlo Methods

The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Example (Cauchy by normal)

go random W Given a Cauchy C (0, 1) distribution, consider a normal
N (0, 1) proposal
The Metropolis–Hastings acceptance ratio is

π(ξ′)/ν(ξ′)

π(ξ)/ν(ξ))
= exp

[{
ξ2 − (ξ′)2

}
/2
] 1 + (ξ′)2

(1 + ξ2)
.

Poor perfomances: the proposal distribution has lighter tails than
the target Cauchy and convergence to the stationary distribution is
not even geometric!

[Mengersen & Tweedie, 1996]
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A collection of Metropolis-Hastings algorithms
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Random walk Metropolis–Hastings

Use of a local perturbation as proposal

Yt = X(t) + εt,

where εt ∼ g, independent of X(t).
The instrumental density is now of the form g(y − x) and the
Markov chain is a random walk if we take g to be symmetric
g(x) = g(−x)
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A collection of Metropolis-Hastings algorithms

Algorithm (Random walk Metropolis)

Given x(t)

1. Generate Yt ∼ g(y − x(t))

2. Take

X(t+1) =

Yt with prob. min

{
1,

f(Yt)

f(x(t))

}
,

x(t) otherwise.
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Example (Random walk and normal target)

forget History! Generate N (0, 1) based on the uniform proposal [−δ, δ]
[Hastings (1970)]

The probability of acceptance is then

ρ(x(t), yt) = exp{(x(t)2 − y2
t )/2} ∧ 1.
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Example (Random walk & normal (2))

Sample statistics

δ 0.1 0.5 1.0

mean 0.399 -0.111 0.10
variance 0.698 1.11 1.06

c© As δ ↑, we get better histograms and a faster exploration of the
support of f .
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Example (Mixture models (again!))

π(θ|x) ∝
n∏
j=1

(
k∑
`=1

p`f(xj |µ`, σ`)

)
π(θ)

Metropolis-Hastings proposal:

θ(t+1) =

{
θ(t) + ωε(t) if u(t) < ρ(t)

θ(t) otherwise

where

ρ(t) =
π(θ(t) + ωε(t)|x)

π(θ(t)|x)
∧ 1

and ω scaled for good acceptance rate
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Example (probit model)

skip probit

Likelihood of the probit model

n∏
i=1

Φ(yT
i β)xi Φ(−yT

i β)1−xi

Random walk proposal

β(t+1) = β(t) + εt εt ∼ Np(0,Σ)

where, for instance,
Σ = α(Y Y T)−1
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Convergence properties

Uniform ergodicity prohibited by random walk structure
At best, geometric ergodicity:

Theorem (Sufficient ergodicity)

For a symmetric density f , log-concave in the tails, and a positive
and symmetric density g, the chain (X(t)) is geometrically ergodic.

[Mengersen & Tweedie, 1996]

no tail effect
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Example (Comparison of tail
effects)

Random-walk
Metropolis–Hastings algorithms
based on a N (0, 1) instrumental
for the generation of (a) a
N (0, 1) distribution and (b) a
distribution with density
ψ(x) ∝ (1 + |x|)−3
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Example (Cauchy by normal continued)

Again, Cauchy C (0, 1) target and Gaussian random walk proposal,
ξ′ ∼ N (ξ, σ2), with acceptance probability

1 + ξ2

1 + (ξ′)2
∧ 1 ,

Overall fit of the Cauchy density by the histogram satisfactory, but
poor exploration of the tails: 99% quantile of C (0, 1) equal to 3,
but no simulation exceeds 14 out of 10, 000!

[Roberts & Tweedie, 2004]
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Again, lack of geometric ergodicity!
[Mengersen & Tweedie, 1996]

Slow convergence shown by the non-stable range after 10, 000
iterations.
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Further convergence properties

Under assumptions skip detailed convergence

I (A1) f is super-exponential, i.e. it is positive with positive
continuous first derivative such that
lim|x|→∞ n(x)′∇ log f(x) = −∞ where n(x) := x/|x|.
In words : exponential decay of f in every direction with rate
tending to ∞

I (A2) lim sup|x|→∞ n(x)′m(x) < 0, where
m(x) = ∇f(x)/|∇f(x)|.
In words: non degeneracy of the countour manifold
Cf(y) = {y : f(y) = f(x)}

Q is geometrically ergodic, and
V (x) ∝ f(x)−1/2 verifies the drift condition

[Jarner & Hansen, 2000]
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Further [further] convergence properties

skip hyperdetailed convergence

If P ψ-irreducible and aperiodic, for r = (r(n))n∈N real-valued non
decreasing sequence, such that, for all n,m ∈ N,

r(n+m) ≤ r(n)r(m),

and r(0) = 1, for C a small set, τC = inf{n ≥ 1, Xn ∈ C}, and
h ≥ 1, assume

sup
x∈C

Ex

[
τC−1∑
k=0

r(k)h(Xk)

]
<∞,
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A collection of Metropolis-Hastings algorithms

then,

S(f, C, r) :=

{
x ∈ X,Ex

{
τC−1∑
k=0

r(k)h(Xk)

}
<∞

}

is full and absorbing and for x ∈ S(f, C, r),

lim
n→∞

r(n)‖Pn(x, .)− f‖h = 0.

[Tuominen & Tweedie, 1994]
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Comments

I [CLT, Rosenthal’s inequality...] h-ergodicity implies CLT
for additive (possibly unbounded) functionals of the chain,
Rosenthal’s inequality and so on...

I [Control of the moments of the return-time] The
condition implies (because h ≥ 1) that

sup
x∈C

Ex[r0(τC)] ≤ sup
x∈C

Ex

{
τC−1∑
k=0

r(k)h(Xk)

}
<∞,

where r0(n) =
∑n

l=0 r(l) Can be used to derive bounds for
the coupling time, an essential step to determine computable
bounds, using coupling inequalities

[Roberts & Tweedie, 1998; Fort & Moulines, 2000]
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Alternative conditions

The condition is not really easy to work with...
[Possible alternative conditions]

(a) [Tuominen, Tweedie, 1994] There exists a sequence
(Vn)n∈N, Vn ≥ r(n)h, such that

(i) supC V0 <∞,
(ii) {V0 =∞} ⊂ {V1 =∞} and
(iii) PVn+1 ≤ Vn − r(n)h+ br(n)IC .
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(b) [Fort 2000] ∃V ≥ f ≥ 1 and b <∞, such that supC V <∞
and

PV (x) + Ex

{
σC∑
k=0

∆r(k)f(Xk)

}
≤ V (x) + bIC(x)

where σC is the hitting time on C and

∆r(k) = r(k)− r(k − 1), k ≥ 1 and ∆r(0) = r(0).

Result (a) ⇔ (b) ⇔ supx∈C Ex
{∑τC−1

k=0 r(k)f(Xk)
}
<∞.
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Extensions

Extensions

There are many other families of HM algorithms

◦ Adaptive Rejection Metropolis Sampling

◦ Reversible Jump (later!)

◦ Langevin algorithms

to name just a few...
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Extensions

Langevin Algorithms

Proposal based on the Langevin diffusion Lt is defined by the
stochastic differential equation

dLt = dBt +
1

2
∇ log f(Lt)dt,

where Bt is the standard Brownian motion

Theorem

The Langevin diffusion is the only non-explosive diffusion which is
reversible with respect to f .
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Extensions

Discretization

Instead, consider the sequence

x(t+1) = x(t) +
σ2

2
∇ log f(x(t)) + σεt, εt ∼ Np(0, Ip)

where σ2 corresponds to the discretization step
Unfortunately, the discretized chain may be be transient, for
instance when

lim
x→±∞

∣∣σ2∇ log f(x)|x|−1
∣∣ > 1
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MH correction

Accept the new value Yt with probability

f(Yt)

f(x(t))
·

exp

{
−
∥∥∥Yt − x(t) − σ2

2 ∇ log f(x(t))
∥∥∥2
/

2σ2

}
exp

{
−
∥∥∥x(t) − Yt − σ2

2 ∇ log f(Yt)
∥∥∥2
/

2σ2

} ∧ 1 .

Choice of the scaling factor σ
Should lead to an acceptance rate of 0.574 to achieve optimal
convergence rates (when the components of x are uncorrelated)

[Roberts & Rosenthal, 1998]
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Extensions

Optimizing the Acceptance Rate

Problem of choice of the transition kernel from a practical point of
view
Most common alternatives:

(a) a fully automated algorithm like ARMS;

(b) an instrumental density g which approximates f , such that
f/g is bounded for uniform ergodicity to apply;

(c) a random walk

In both cases (b) and (c), the choice of g is critical,
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Extensions

Case of the independent Metropolis–Hastings algorithm

Choice of g that maximizes the average acceptance rate

ρ = E
[
min

{
f(Y ) g(X)

f(X) g(Y )
, 1

}]
= 2P

(
f(Y )

g(Y )
≥ f(X)

g(X)

)
, X ∼ f, Y ∼ g,

Related to the speed of convergence of

1

T

T∑
t=1

h(X(t))

to Ef [h(X)] and to the ability of the algorithm to explore any
complexity of f
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Case of the independent Metropolis–Hastings algorithm (2)

Practical implementation
Choose a parameterized instrumental distribution g(·|θ) and
adjusting the corresponding parameters θ based on the evaluated
acceptance rate

ρ̂(θ) =
2

m

m∑
i=1

I{f(yi)g(xi)>f(xi)g(yi)} ,

where x1, . . . , xm sample from f and y1, . . . , ym iid sample from g.
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Example (Inverse Gaussian distribution)

no inverse

Simulation from

f(z|θ1, θ2) ∝ z−3/2 exp

{
−θ1z −

θ2

z
+ 2
√
θ1θ2 + log

√
2θ2

}
IR+(z)

based on the Gamma distribution Ga(α, β) with α = β
√
θ2/θ1

Since
f(x)

g(x)
∝ x−α−1/2 exp

{
(β − θ1)x− θ2

x

}
,

the maximum is attained at

x∗β =
(α+ 1/2)−

√
(α+ 1/2)2 + 4θ2(θ1 − β)

2(β − θ1)
.
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Example (Inverse Gaussian distribution (2))

The analytical optimization (in β) of

M(β) = (x∗β)−α−1/2 exp

{
(β − θ1)x∗β −

θ2

x∗β

}

is impossible
β 0.2 0.5 0.8 0.9 1 1.1 1.2 1.5
ρ̂(β) 0.22 0.41 0.54 0.56 0.60 0.63 0.64 0.71
E[Z] 1.137 1.158 1.164 1.154 1.133 1.148 1.181 1.148

E[1/Z] 1.116 1.108 1.116 1.115 1.120 1.126 1.095 1.115

(θ1 = 1.5, θ2 = 2, and m = 5000).
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Case of the random walk

Different approach to acceptance rates
A high acceptance rate does not indicate that the algorithm is
moving correctly since it indicates that the random walk is moving
too slowly on the surface of f .
If x(t) and yt are close, i.e. f(x(t)) ' f(yt) y is accepted with
probability

min

(
f(yt)

f(x(t))
, 1

)
' 1 .

For multimodal densities with well separated modes, the negative
effect of limited moves on the surface of f clearly shows.
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Extensions

Case of the random walk (2)

If the average acceptance rate is low, the successive values of f(yt)
tend to be small compared with f(x(t)), which means that the
random walk moves quickly on the surface of f since it often
reaches the “borders” of the support of f
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Extensions

Rule of thumb

In small dimensions, aim at an average acceptance rate of 50%. In
large dimensions, at an average acceptance rate of 25%.

[Gelman,Gilks and Roberts, 1995]

This rule is to be taken with a pinch of salt!
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Example (Noisy AR(1) continued)

For a Gaussian random walk with scale ω small enough, the
random walk never jumps to the other mode. But if the scale ω is
sufficiently large, the Markov chain explores both modes and give a
satisfactory approximation of the target distribution.
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Extensions

Markov chain based on a random walk with scale ω = .1.
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Extensions

Markov chain based on a random walk with scale ω = .5.
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The Gibbs Sampler
General Principles
Completion
Convergence
The Hammersley-Clifford theorem
Hierarchical models
Data Augmentation
Improper Priors
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General Principles

A very specific simulation algorithm based on the target
distribution f :

1. Uses the conditional densities f1, . . . , fp from f

2. Start with the random variable X = (X1, . . . , Xp)

3. Simulate from the conditional densities,

Xi|x1, x2, . . . , xi−1, xi+1, . . . , xp

∼ fi(xi|x1, x2, . . . , xi−1, xi+1, . . . , xp)

for i = 1, 2, . . . , p.
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General Principles

Algorithm (Gibbs sampler)

Given x(t) = (x
(t)
1 , . . . , x

(t)
p ), generate

1. X
(t+1)
1 ∼ f1(x1|x(t)

2 , . . . , x
(t)
p );

2. X
(t+1)
2 ∼ f2(x2|x(t+1)

1 , x
(t)
3 , . . . , x

(t)
p ),

. . .

p. X
(t+1)
p ∼ fp(xp|x(t+1)

1 , . . . , x
(t+1)
p−1 )

X(t+1) → X ∼ f
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Properties

The full conditionals densities f1, . . . , fp are the only densities used
for simulation. Thus, even in a high dimensional problem, all of
the simulations may be univariate
The Gibbs sampler is not reversible with respect to f . However,
each of its p components is. Besides, it can be turned into a
reversible sampler, either using the Random Scan Gibbs sampler

see section or running instead the (double) sequence

f1 · · · fp−1fpfp−1 · · · f1
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Example (Bivariate Gibbs sampler)

(X,Y ) ∼ f(x, y)

Generate a sequence of observations by
Set X0 = x0

For t = 1, 2, . . . , generate

Yt ∼ fY |X(·|xt−1)

Xt ∼ fX|Y (·|yt)

where fY |X and fX|Y are the conditional distributions
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A Very Simple Example: Independent N (µ, σ2)
Observations

When Y1, . . . , Yn
iid∼ N (y|µ, σ2) with both µ and σ unknown, the

posterior in (µ, σ2) is conjugate outside a standard familly

But...

µ|Y 0:n, σ
2 ∼ N

(
µ
∣∣∣ 1
n

∑n
i=1 Yi,

σ2

n )

σ2|Y 1:n, µ ∼ IG
(
σ2
∣∣n

2 − 1, 1
2

∑n
i=1(Yi − µ)2

)
assuming constant (improper) priors on both µ and σ2

I Hence we may use the Gibbs sampler for simulating from the
posterior of (µ, σ2)
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R Gibbs Sampler for Gaussian posterior

n = length(Y);

S = sum(Y);

mu = S/n;

for (i in 1:500)

S2 = sum((Y-mu)^2);

sigma2 = 1/rgamma(1,n/2-1,S2/2);

mu = S/n + sqrt(sigma2/n)*rnorm(1);
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General Principles

Example of results with n = 10 observations from the
N (0, 1) distribution

Number of Iterations 1, 2, 3, 4, 5, 10, 25, 50, 100, 500
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Limitations of the Gibbs sampler

Formally, a special case of a sequence of 1-D M-H kernels, all with
acceptance rate uniformly equal to 1.
The Gibbs sampler

1. limits the choice of instrumental distributions

2. requires some knowledge of f

3. is, by construction, multidimensional

4. does not apply to problems where the number of parameters
varies as the resulting chain is not irreducible.
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Latent variables are back

The Gibbs sampler can be generalized in much wider generality
A density g is a completion of f if∫

Z
g(x, z) dz = f(x)

Note

The variable z may be meaningless for the problem
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Purpose

g should have full conditionals that are easy to simulate for a
Gibbs sampler to be implemented with g rather than f

For p > 1, write y = (x, z) and denote the conditional densities of
g(y) = g(y1, . . . , yp) by

Y1|y2, . . . , yp ∼ g1(y1|y2, . . . , yp),

Y2|y1, y3, . . . , yp ∼ g2(y2|y1, y3, . . . , yp),

. . . ,

Yp|y1, . . . , yp−1 ∼ gp(yp|y1, . . . , yp−1).
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The move from Y (t) to Y (t+1) is defined as follows:

Algorithm (Completion Gibbs sampler)

Given (y
(t)
1 , . . . , y

(t)
p ), simulate

1. Y
(t+1)

1 ∼ g1(y1|y(t)
2 , . . . , y

(t)
p ),

2. Y
(t+1)

2 ∼ g2(y2|y(t+1)
1 , y

(t)
3 , . . . , y

(t)
p ),

. . .

p. Y
(t+1)
p ∼ gp(yp|y(t+1)

1 , . . . , y
(t+1)
p−1 ).
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Example (Mixtures all over again)

Hierarchical missing data structure:
If

X1, . . . , Xn ∼
k∑
i=1

pif(x|θi),

then

X|Z ∼ f(x|θZ), Z ∼ p1I(z = 1) + . . .+ pkI(z = k),

Z is the component indicator associated with observation x
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Example (Mixtures (2))

Conditionally on (Z1, . . . , Zn) = (z1, . . . , zn) :

π(p1, . . . , pk, θ1, . . . , θk|x1, . . . , xn, z1, . . . , zn)

∝ pα1+n1−1
1 . . . pαk+nk−1

k

×π(θ1|y1 + n1x̄1, λ1 + n1) . . . π(θk|yk + nkx̄k, λk + nk),

with
ni =

∑
j

I(zj = i) and x̄i =
∑
j; zj=i

xj/ni.
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Algorithm (Mixture Gibbs sampler)

1. Simulate

θi ∼ π(θi|yi + nix̄i, λi + ni) (i = 1, . . . , k)

(p1, . . . , pk) ∼ D(α1 + n1, . . . , αk + nk)

2. Simulate (j = 1, . . . , n)

Zj |xj , p1, . . . , pk, θ1, . . . , θk ∼
k∑
i=1

pijI(zj = i)

with (i = 1, . . . , k)
pij ∝ pif(xj |θi)

and update ni and x̄i (i = 1, . . . , k).
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A wee problem
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Random Scan Gibbs sampler

back to basics don’t do random

Modification of the above Gibbs sampler where, with probability
1/p, the i-th component is drawn from fi(xi|X−i), ie when the
components are chosen at random

Motivation

The Random Scan Gibbs sampler is reversible.
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Slice sampler as generic Gibbs

If f(θ) can be written as a product

k∏
i=1

fi(θ),

it can be completed as

k∏
i=1

I0≤ωi≤fi(θ),

leading to the following Gibbs algorithm:
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Algorithm (Slice sampler)

Simulate

1. ω
(t+1)
1 ∼ U[0,f1(θ(t))];

. . .

k. ω
(t+1)
k ∼ U[0,fk(θ(t))];

k+1. θ(t+1) ∼ UA(t+1) , with

A(t+1) = {y; fi(y) ≥ ω(t+1)
i , i = 1, . . . , k}.
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Example of results with a truncated N (−3, 1) distribution
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Number of Iterations 2, 3, 4, 5, 10, 50, 100
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Good slices

The slice sampler usually enjoys good theoretical properties (like
geometric ergodicity and even uniform ergodicity under bounded f
and bounded X ).
As k increases, the determination of the set A(t+1) may get
increasingly complex.
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Example (Stochastic volatility core distribution)

Difficult part of the stochastic volatility model

π(x) ∝ exp−
{
σ2(x− µ)2 + β2 exp(−x)y2 + x

}
/2 ,

simplified in exp−
{
x2 + α exp(−x)

}
Slice sampling means simulation from a uniform distribution on

A =
{
x; exp−

{
x2 + α exp(−x)

}
/2 ≥ u

}
=

{
x;x2 + α exp(−x) ≤ ω

}
if we set ω = −2 log u.
Note Inversion of x2 + α exp(−x) = ω needs to be done by
trial-and-error.
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Properties of the Gibbs sampler

Theorem (Convergence)

For
(Y1, Y2, · · · , Yp) ∼ g(y1, . . . , yp),

if either
[Positivity condition]

(i) g(i)(yi) > 0 for every i = 1, · · · , p, implies that
g(y1, . . . , yp) > 0, where g(i) denotes the marginal distribution
of Yi, or

(ii) the transition kernel is absolutely continuous with respect to g,

then the chain is irreducible and positive Harris recurrent.
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Properties of the Gibbs sampler (2)

Consequences

(i) If
∫
h(y)g(y)dy <∞, then

lim
nT→∞

1

T

T∑
t=1

h1(Y (t)) =

∫
h(y)g(y)dy a.e. g.

(ii) If, in addition, (Y (t)) is aperiodic, then

lim
n→∞

∥∥∥∥∫ Kn(y, ·)µ(dx)− f
∥∥∥∥
TV

= 0

for every initial distribution µ.
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Slice sampler

fast on that slice

For convergence, the properties of Xt and of f(Xt) are identical

Theorem (Uniform ergodicity)

If f is bounded and suppf is bounded, the simple slice sampler is
uniformly ergodic.

[Mira & Tierney, 1997]
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A small set for a slice sampler

no slice detail

For ε? > ε?,
C = {x ∈ X ; ε? < f(x) < ε?}

is a small set:
Pr(x, ·) ≥ ε?

ε?
µ(·)

where

µ(A) =
1

ε?

∫ ε?

0

λ(A ∩ L(ε))

λ(L(ε))
dε

if L(ε) = {x ∈ X ; f(x) > ε}‘
[Roberts & Rosenthal, 1998]
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Slice sampler: drift

Under differentiability and monotonicity conditions, the slice
sampler also verifies a drift condition with V (x) = f(x)−β, is
geometrically ergodic, and there even exist explicit bounds on the
total variation distance

[Roberts & Rosenthal, 1998]

Example (Exponential Exp(1))
For n > 23,

||Kn(x, ·)− f(·)||TV ≤ .054865 (0.985015)n (n− 15.7043)
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Slice sampler: convergence

no more slice detail

Theorem

For any density such that

ε
∂

∂ε
λ ({x ∈ X ; f(x) > ε}) is non-increasing

then
||K523(x, ·)− f(·)||TV ≤ .0095

[Roberts & Rosenthal, 1998]
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A poor slice sampler
Example

Consider

f(x) = exp {−||x||} x ∈ Rd

Slice sampler equivalent to
one-dimensional slice sampler on

π(z) = zd−1 e−z z > 0

or on

π(u) = e−u
1/d

u > 0

Poor performances when d large
(heavy tails)
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Hammersley-Clifford theorem

An illustration that conditionals determine the joint distribution

Theorem

If the joint density g(y1, y2) have conditional distributions
g1(y1|y2) and g2(y2|y1), then

g(y1, y2) =
g2(y2|y1)∫

g2(v|y1)/g1(y1|v) dv
.

[Hammersley & Clifford, circa 1970]
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General HC decomposition

Under the positivity condition, the joint distribution g satisfies

g(y1, . . . , yp) ∝
p∏
j=1

g`j (y`j |y`1 , . . . , y`j−1
, y′`j+1

, . . . , y′`p)

g`j (y
′
`j
|y`1 , . . . , y`j−1

, y′`j+1
, . . . , y′`p)

for every permutation ` on {1, 2, . . . , p} and every y′ ∈ Y .
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Hierarchical models

no hierarchy

The Gibbs sampler is particularly well suited to hierarchical models

Example (Animal epidemiology)

Counts of the number of cases of clinical mastitis in 127 dairy
cattle herds over a one year period
Number of cases in herd i

Xi ∼P(λi) i = 1, · · · ,m

where λi is the underlying rate of infection in herd i
Lack of independence might manifest itself as overdispersion.
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Example (Animal epidemiology (2))

Modified model

Xi ∼ P(λi)

λi ∼ G a(α, βi)

βi ∼ I G (a, b),

The Gibbs sampler corresponds to conditionals

λi ∼ π(λi|x, α, βi) = G a(xi + α, [1 + 1/βi]
−1)

βi ∼ π(βi|x, α, a, b, λi) = I G (α+ a, [λi + 1/b]−1)
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if you hate rats

Example (Rats)

Experiment where rats are intoxicated by a substance, then treated
by either a placebo or a drug:

xij ∼ N (θi, σ
2
c ), 1 ≤ j ≤ Jci , control

yij ∼ N (θi + δi, σ
2
a), 1 ≤ j ≤ Jai , intoxication

zij ∼ N (θi + δi + ξi, σ
2
t ), 1 ≤ j ≤ J ti , treatment

Additional variable wi, equal to 1 if the rat is treated with the
drug, and 0 otherwise.
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Example (Rats (2))

Prior distributions (1 ≤ i ≤ I),

θi ∼ N (µθ, σ
2
θ), δi ∼ N (µδ, σ

2
δ ),

and
ξi ∼ N (µP , σ

2
P ) or ξi ∼ N (µD, σ

2
D),

if ith rat treated with a placebo (P) or a drug (D)
Hyperparameters of the model,

µθ, µδ, µP , µD, σc, σa, σt, σθ, σδ, σP , σD ,

associated with Jeffreys’ noninformative priors.
Alternative prior with two possible levels of intoxication

δi ∼ pN (µδ1, σ
2
δ1) + (1− p)N (µδ2, σ

2
δ2),
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Conditional decompositions

Easy decomposition of the posterior distribution
For instance, if

θ|θ1 ∼ π1(θ|θ1), θ1 ∼ π2(θ1),

then

π(θ|x) =

∫
Θ1

π(θ|θ1, x)π(θ1|x) dθ1,
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Conditional decompositions (2)

where

π(θ|θ1, x) =
f(x|θ)π1(θ|θ1)

m1(x|θ1)
,

m1(x|θ1) =

∫
Θ
f(x|θ)π1(θ|θ1) dθ,

π(θ1|x) =
m1(x|θ1)π2(θ1)

m(x)
,

m(x) =

∫
Θ1

m1(x|θ1)π2(θ1) dθ1.
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Conditional decompositions (3)

Moreover, this decomposition works for the posterior moments,
that is, for every function h,

Eπ[h(θ)|x] = Eπ(θ1|x) [Eπ1 [h(θ)|θ1, x]] ,

where

Eπ1 [h(θ)|θ1, x] =

∫
Θ
h(θ)π(θ|θ1, x) dθ.
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Example (Rats inc., continued if you still hate rats )

Posterior complete distribution given by

π((θi, δi, ξi)i, µθ, . . . , σc, . . . |D) ∝
I∏
i=1

{
exp−{(θi − µθ)2/2σ2

θ + (δi − µδ)2/2σ2
δ}

Jci∏
j=1

exp−{(xij − θi)2/2σ2
c}

Jai∏
j=1

exp−{(yij − θi − δi)2/2σ2
a}

Jti∏
j=1

exp−{(zij − θi − δi − ξi)2/2σ2
t }
}

∏
`i=0

exp−{(ξi − µP )2/2σ2
P }
∏
`i=1

exp−{(ξi − µD)2/2σ2
D}

σ
−
∑
i J

c
i−1

c σ
−
∑
i J

a
i −1

a σ
−
∑
i J

t
i−1

t (σθσδ)
−I−1σ−ID−1D σ−IP−1P ,



Markov Chain Monte Carlo Methods

The Gibbs Sampler

Hierarchical models

Local conditioning property

For the hierarchical model

π(θ) =

∫
Θ1×...×Θn

π1(θ|θ1)π2(θ1|θ2) · · ·πn+1(θn) dθ1 · · · dθn+1.

we have
π(θi|x, θ, θ1, . . . , θn) = π(θi|θi−1, θi+1)

with the convention θ0 = θ and θn+1 = 0.
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Example (Rats inc., terminated still this zemmiphobia?! )

The full conditional distributions correspond to standard
distributions and Gibbs sampling applies.
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Posterior Gibbs inference

µδ µD µP µD − µP
Probability 1.00 0.9998 0.94 0.985
Confidence [-3.48,-2.17] [0.94,2.50] [-0.17,1.24] [0.14,2.20]

Posterior probabilities of significant effects
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Data Augmentation

The Gibbs sampler with only two steps is particularly useful

Algorithm (Data Augmentation)

Given y(t),

1.. Simulate Y
(t+1)

1 ∼ g1(y1|y(t)
2 ) ;

2.. Simulate Y
(t+1)

2 ∼ g2(y2|y(t+1)
1 ) .

Theorem (Markov property)

Both (Y
(t)

1 ) and (Y
(t)

2 ) are Markov chains, with transitions

Ki(x, x
∗) =

∫
gi(y|x)g3−i(x

∗|y) dy,
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Example (Grouped counting data)

360 consecutive records of the number of passages per unit time
Number of
passages 0 1 2 3 4 or more

Number of
observations 139 128 55 25 13
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Example (Grouped counting data (2))

Feature Observations with 4 passages and more are grouped
If observations are Poisson P(λ), the likelihood is

`(λ|x1, . . . , x5)

∝ e−347λλ128+55×2+25×3

(
1− e−λ

3∑
i=0

λi

i!

)13

,

which can be difficult to work with.
Idea With a prior π(λ) = 1/λ, complete the vector (y1, . . . , y13) of
the 13 units larger than 4
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Algorithm (Poisson-Gamma Gibbs)

a Simulate Y
(t)
i ∼P(λ(t−1)) Iy≥4 i = 1, . . . , 13

b Simulate

λ(t) ∼ Ga

(
313 +

13∑
i=1

y
(t)
i , 360

)
.

The Bayes estimator

δπ =
1

360T

T∑
t=1

(
313 +

13∑
i=1

y
(t)
i

)

converges quite rapidly to R& B
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Rao-Blackwellization

If (y1, y2, . . . , yp)
(t), t = 1, 2, . . . T is the output from a Gibbs

sampler

δ0 =
1

T

T∑
t=1

h
(
y

(t)
1

)
→
∫
h(y1)g(y1)dy1

and is unbiased.
The Rao-Blackwellization replaces δ0 with its conditional
expectation

δrb =
1

T

T∑
t=1

E
[
h(Y1)|y(t)

2 , . . . , y(t)
p

]
.
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Rao-Blackwellization (2)

Then

◦ Both estimators converge to E[h(Y1)]

◦ Both are unbiased,

◦ and
var
(
E
[
h(Y1)|Y (t)

2 , . . . , Y (t)
p

])
≤ var(h(Y1)),

so δrb is uniformly better (for Data Augmentation)
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Examples of Rao-Blackwellization

Example

Bivariate normal Gibbs sampler

X | y ∼ N (ρy, 1− ρ2)

Y | x ∼ N (ρx, 1− ρ2).

Then

δ0 =
1

T

T∑
i=1

X(i) and δ1 =
1

T

T∑
i=1

E[X(i)|Y (i)] =
1

T

T∑
i=1

%Y (i),

estimate E[X] and σ2
δ0
/σ2

δ1
= 1

ρ2
> 1.
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Examples of Rao-Blackwellization (2)

Example (Poisson-Gamma Gibbs cont’d)

Näıve estimate

δ0 =
1

T

T∑
t=1

λ(t)

and Rao-Blackwellized version

δπ =
1

T

T∑
t=1

E[λ(t)|x1, x2, . . . , x5, y
(i)
1 , y

(i)
2 , . . . , y

(i)
13 ]

=
1

360T

T∑
t=1

(
313 +

13∑
i=1

y
(t)
i

)
,

back to graph
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NP Rao-Blackwellization & Rao-Blackwellized NP

Another substantial benefit of Rao-Blackwellization is in the
approximation of densities of different components of y without
nonparametric density estimation methods.

Lemma

The estimator

1

T

T∑
t=1

gi(yi|y(t)
j , j 6= i) −→ gi(yi),

is unbiased.
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The Duality Principle
skip dual part

Ties together the properties of the two Markov chains in Data
Augmentation
Consider a Markov chain (X(t)) and a sequence (Y (t)) of random
variables generated from the conditional distributions

X(t)|y(t) ∼ π(x|y(t))

Y (t+1)|x(t), y(t) ∼ f(y|x(t), y(t)) .

Theorem (Duality properties)

If the chain (Y (t)) is ergodic then so is (X(t)) and the duality also
holds for geometric or uniform ergodicity.

Note

The chain (Y (t)) can be discrete, and the chain (X(t)) continuous.
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Improper Priors

 Unsuspected danger resulting from careless use of MCMC
algorithms:
It may happen that

◦ all conditional distributions are well defined,

◦ all conditional distributions may be simulated from, but...

◦ the system of conditional distributions may not correspond to
any joint distribution

Warning The problem is due to careless use of the Gibbs sampler
in a situation for which the underlying assumptions are violated



Markov Chain Monte Carlo Methods

The Gibbs Sampler

Improper Priors

Example (Conditional exponential distributions)

For the model

X1|x2 ∼ E xp(x2) , X2|x1 ∼ E xp(x1)

the only candidate f(x1, x2) for the joint density is

f(x1, x2) ∝ exp(−x1x2),

but ∫
f(x1, x2)dx1dx2 =∞

c© These conditionals do not correspond to a joint
probability distribution
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Example (Improper random effects)

Consider

Yij = µ+ αi + εij , i = 1, . . . , I, j = 1, . . . , J,

where
αi ∼ N (0, σ2) and εij ∼ N (0, τ2),

the Jeffreys (improper) prior for the parameters µ, σ and τ is

π(µ, σ2, τ2) =
1

σ2τ2
.
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Example (Improper random effects 2)

The conditional distributions

αi|y, µ, σ2, τ2 ∼ N

(
J(ȳi − µ)

J + τ2σ−2
, (Jτ−2 + σ−2)−1

)
,

µ|α, y, σ2, τ2 ∼ N (ȳ − ᾱ, τ2/JI) ,

σ2|α, µ, y, τ2 ∼ IG

(
I/2, (1/2)

∑
i

α2
i

)
,

τ2|α, µ, y, σ2 ∼ IG

IJ/2, (1/2)
∑
i,j

(yij − αi − µ)2

 ,

are well-defined and a Gibbs sampler can be easily implemented in
this setting.
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Example (Improper random
effects 2)

The figure shows the sequence of
µ(t)’s and its histogram over
1, 000 iterations. They both fail
to indicate that the
corresponding “joint distribution”
does not exist
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Final notes on impropriety

The improper posterior Markov chain
cannot be positive recurrent

The major task in such settings is to find indicators that flag that
something is wrong. However, the output of an “improper” Gibbs
sampler may not differ from a positive recurrent Markov chain.

Example

The random effects model was initially treated in Gelfand et al.
(1990) as a legitimate model
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MCMC tools for variable dimension problems

Further Topics
MCMC tools for variable dimension problems
Introduction
Green’s method
Birth and Death processes
Sequential importance sampling
Adaptive MCMC
Importance sampling revisited
Dynamic extensions
Population Monte Carlo
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Introduction

A new brand of problems

There exist setups where

One of the things we do not know is the number
of things we do not know

[Peter Green]
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Introduction

Bayesian Model Choice

Typical in model choice settings

- model construction (nonparametrics)

- model checking (goodness of fit)

- model improvement (expansion)

- model prunning (contraction)

- model comparison

- hypothesis testing (Science)

- prediction (finance)
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Bayesian Model Choice II

Many areas of application

I variable selection

I change point(s) determination

I image analysis

I graphical models and expert systems

I variable dimension models

I causal inference
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Introduction

Example (Mixture again, yes!)

Benchmark dataset: Speed of galaxies
[Roeder, 1990; Richardson & Green, 1997]

1.0 1.5 2.0 2.5 3.0 3.5

0.0
0.5

1.0
1.5

2.0
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Example (Mixture again (2))

Modelling by a mixture model

Mi : xj ∼
i∑

`=1

p`iN (µ`i, σ
2
`i) (j = 1, . . . , 82)

i?
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Bayesian variable dimension model

Definition

A variable dimension model is defined as a collection of models
(k = 1. . . . ,K),

Mk = {f(·|θk); θk ∈ Θk} ,

associated with a collection of priors on the parameters of these
models,

πk(θk) ,

and a prior distribution on the indices of these models,

{%(k) , k = 1, . . . ,K} .

Alternative notation:

π(Mk, θk) = %(k)πk(θk)
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Bayesian solution

Formally over:

1. Compute

p(Mi|x) =

pi

∫
Θi

fi(x|θi)πi(θi)dθi∑
j

pj

∫
Θj

fj(x|θj)πj(θj)dθj

2. Take largest p(Mi|x) to determine model, or use∑
j

pj

∫
Θj

fj(x|θj)πj(θj)dθj

as predictive

[Different decision theoretic perspectives]
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Difficulties
Not at

I (formal) inference level [see above]

I parameter space representation

Θ =
⊕
k

Θk ,

[even if there are parameters common to several models]

Rather at

I (practical) inference level:
model separation, interpretation, overfitting, prior modelling,
prior coherence

I computational level:
infinity of models, moves between models, predictive
computation
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Green’s resolution

Setting up a proper measure–theoretic framework for designing
moves between models Mk

[Green, 1995]
Create a reversible kernel K on H =

⋃
k{k} ×Θk such that∫

A

∫
B
K(x, dy)π(x)dx =

∫
B

∫
A
K(y, dx)π(y)dy

for the invariant density π [x is of the form (k, θ(k))]
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Green’s resolution (2)
Write K as

K(x,B) =

∞∑
m=1

∫
ρm(x, y)qm(x, dy) + ω(x)IB(x)

where qm(x, dy) is a transition measure to model Mm and
ρm(x, y) the corresponding acceptance probability.

Introduce a symmetric measure ξm(dx, dy) on H2 and impose on
π(dx)qm(x, dy) to be absolutely continuous wrt ξm,

π(dx)qm(x, dy)

ξm(dx, dy)
= gm(x, y)

Then

ρm(x, y) = min

{
1,
gm(y, x)

gm(x, y)

}
ensures reversibility
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Special case
When contemplating a move between two models, M1 and M2,
the Markov chain being in state θ1 ∈M1, denote by K1→2(θ1, dθ)
and K2→1(θ2, dθ) the corresponding kernels, under the detailed
balance condition

π(dθ1)K1→2(θ1, dθ) = π(dθ2)K2→1(θ2, dθ) ,

and take, wlog, dim(M2) > dim(M1).
Proposal expressed as

θ2 = Ψ1→2(θ1, v1→2)

where v1→2 is a random variable of dimension
dim(M2)− dim(M1), generated as

v1→2 ∼ ϕ1→2(v1→2) .
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Special case (2)

In this case, q1→2(θ1, dθ2) has density

ϕ1→2(v1→2)

∣∣∣∣∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣−1

,

by the Jacobian rule.
If probability $1→2 of choosing move to M2 while in M1,
acceptance probability reduces to

α(θ1, v1→2) = 1 ∧ π(M2, θ2)$2→1

π(M1, θ1)$1→2 ϕ1→2(v1→2)

∣∣∣∣∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣ .
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Interpretation (1)

The representation puts us back in a fixed dimension setting:

I M1 ×V1→2 and M2 are in one-to-one relation

I regular Metropolis–Hastings move from the couple (θ1, v1→2)
to θ2 when stationary distributions are

π(M1, θ1)× ϕ1→2(v1→2)

and π(M2, θ2), and when proposal distribution is deterministic
(??)
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Green’s method

Interpretation (2)

Consider, instead, the proposals

θ2 ∼ N (Ψ1→2(θ1, v1→2), ε) and Ψ1→2(θ1, v1→2) ∼ N (θ2, ε)

Reciprocal proposal has density

exp
{
−(θ2 −Ψ1→2(θ1, v1→2))2/2ε

}
√

2πε
×
∣∣∣∣∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣
by the Jacobian rule.
Thus Metropolis–Hastings acceptance probability is

1 ∧ π(M2, θ2)

π(M1, θ1)ϕ1→2(v1→2)

∣∣∣∣∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣
Does not depend on ε: Let ε go to 0
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Saturation

[Brooks, Giudici, Roberts, 2003]

Consider series of models Mi (i = 1, . . . , k) such that

max
i

dim(Mi) = nmax <∞

Parameter of model Mi then completed with an auxiliary variable
Ui such that

dim(θi, ui) = nmax and Ui ∼ qi(ui)

Posit the following joint distribution for [augmented] model Mi

π(Mi, θi) qi(ui)
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Back to fixed dimension

Saturation: no varying dimension anymore since (θi, ui) of fixed
dimension.

Algorithm (Three stage MCMC update)

1. Update the current value of the parameter, θi;

2. Update ui conditional on θi;

3. Update the current model from Mi to Mj using the bijection

(θj , uj) = Ψi→j(θi, ui)
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Example (Mixture of normal distributions)

Mk :

k∑
j=1

pjkN (µjk, σ
2
jk)

[Richardson & Green, 1997]
Moves:

(i) Split
pjk = pj(k+1) + p(j+1)(k+1)

pjkµjk = pj(k+1)µj(k+1) + p(j+1)(k+1)µ(j+1)(k+1)

pjkσ
2
jk = pj(k+1)σ

2
j(k+1) + p(j+1)(k+1)σ

2
(j+1)(k+1)

(ii) Merge (reverse)
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Green’s method

Example (Mixture (2))

Additional Birth and Death moves for empty components
(created from the prior distribution)
Equivalent

(i). Split

(T )


u1, u2, u3 ∼ U(0, 1)
pj(k+1) = u1pjk
µj(k+1) = u2µjk
σ2
j(k+1) = u3σ

2
jk
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Histogram of k

k

1 2 3

0e+00 2e+04 4e+04 6e+04

Rawplot of k

Histogram and rawplot of
100, 000 k’s under the
constraint k ≤ 5.

Normalised enzyme dataset
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Green’s method

Example (Hidden Markov model)

move to birth Extension of the mixture model

P (Xt + 1 = j|Xt = i) = wij ,

wij = ωij/
∑
`

ωi`,

Yt|Xt = i ∼ N (µi, σ
2
i ).
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Green’s method
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Green’s method

Example (Hidden Markov model (2))

Move to split component j? into j1 and j2:

ωij1 = ωij?εi, ωij2 = ωij?(1− εi), εi ∼ U(0, 1);

ωj1j = ωj?jξj , ωj2j = ωj?j/ξj , ξj ∼ logN (0, 1);

similar ideas give ωj1j2 etc.;

µj1 = µj? − 3σj?εµ, µj2 = µj? + 3σj?εµ, εµ ∼ N (0, 1);

σ2
j1 = σ2

j∗ξσ, σ2
j2 = σ2

j∗/ξσ, ξσ ∼ logN (0, 1).

[Robert & al., 2000]
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Upper panel: First 40,000 values of k for S&P 500 data, plotted

every 20th sweep. Middle panel: estimated posterior distribution

of k for S&P 500 data as a function of number of sweeps. Lower

panel: σ1 and σ2 in first 20,000 sweeps with k = 2 for S&P 500

data.
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Example (Autoregressive model)

move to birth

Typical setting for model choice: determine order p of AR(p)
model
Consider the (less standard) representation

p∏
i=1

(1− λiB) Xt = εt , εt ∼ N (0, σ2)

where the λi’s are within the unit circle if complex and within
[−1, 1] if real.

[Huerta and West, 1998]
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AR(p) reversible jump algorithm

Example (Autoregressive (2))

Uniform priors for the real and complex roots λj ,

1

bk/2c+ 1

∏
λi∈R

1

2
I|λi|<1

∏
λi 6∈R

1

π
I|λi|<1

and (purely birth-and-death) proposals based on these priors

I k → k+1 [Creation of real root]

I k → k+2 [Creation of complex root]

I k → k-1 [Deletion of real root]

I k → k-2 [Deletion of complex root]
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Birth and Death processes

instant death!

Use of an alternative methodology based on a Birth–&-Death
(point) process
[Preston, 1976; Ripley, 1977; Geyer & Møller, 1994; Stevens, 1999]

Idea: Create a Markov chain in continuous time, i.e. a Markov
jump process, moving between models Mk, by births (to increase
the dimension), deaths (to decrease the dimension), and other
moves.
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Birth and Death processes

Time till next modification (jump) is exponentially distributed
with rate depending on current state
Remember: if ξ1, . . . , ξv are exponentially distributed, ξi ∼ E(λi),

min ξi ∼ E

(∑
i

λi

)

Difference with MH-MCMC: Whenever a jump occurs, the
corresponding move is always accepted. Acceptance probabilities
replaced with holding times.
Implausible configurations

L(θ)π(θ)� 1

die quickly.
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Balance condition

Sufficient to have detailed balance

L(θ)π(θ)q(θ,θ′) = L(θ′)π(θ′)q(θ′,θ) for all θ,θ′

for π̃(θ) ∝ L(θ)π(θ) to be stationary.
Here q(θ,θ′) rate of moving from state θ to θ′.
Possibility to add split/merge and fixed-k processes if balance
condition satisfied.
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Birth and Death processes

Example (Mixture cont’d)

Stephen’s original modelling:

I Representation as a (marked) point process

Φ =

{
{pj , (µj , σj)}

}
j

I Birth rate λ0 (constant)

I Birth proposal from the prior

I Death rate δj(Φ) for removal of point j

I Death proposal removes component and modifies weights
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Birth and Death processes

Example (Mixture cont’d (2))

I Overall death rate

k∑
j=1

δj(Φ) = δ(Φ)

I Balance condition

(k+1) d(Φ∪{p, (µ, σ)}) L(Φ∪{p, (µ, σ)}) = λ0L(Φ)
π(k)

π(k + 1)

with
d(Φ \ {pj , (µj , σj)}) = δj(Φ)

I Case of Poisson prior k ∼ Poi(λ1)

δj(Φ) =
λ0

λ1

L(Φ \ {pj , (µj , σj)})
L(Φ)
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Birth and Death processes

Stephen’s original algorithm

Algorithm (Mixture Birth& Death)

For v = 0, 1, · · · , V
t← v

Run till t > v + 1

1. Compute δj(Φ) =
L(Φ|Φj)
L(Φ)

λ0
λ1

2. δ(Φ)←
k∑
j=1

δj(Φj), ξ ← λ0 + δ(Φ), u ∼ U([0, 1])

3. t← t− u log(u)
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Algorithm (Mixture Birth& Death (cont’d))

4. With probability δ(Φ)/ξ

Remove component j with probability δj(Φ)/δ(Φ)
k ← k − 1
p` ← p`/(1− pj) (` 6= j)

Otherwise,

Add component j from the prior π(µj , σj) pj ∼ Be(γ, kγ)
p` ← p`(1− pj) (` 6= j)
k ← k + 1

5. Run I MCMC(k, β, p)
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Rescaling time

move to HMM In discrete-time RJMCMC, let the time unit be 1/N ,
put

βk = λk/N and δk = 1− λk/N
As N →∞, each birth proposal will be accepted, and having k components births occur according to a Poisson

process with rate λk while component (w, φ) dies with rate

lim
N→∞

Nδk+1 ×
1

k + 1
×min(A

−1
, 1)

= lim
N→∞

N
1

k + 1
× likelihood ratio−1 ×

βk

δk+1

×
b(w, φ)

(1− w)k−1

= likelihood ratio−1 ×
λk

k + 1
×

b(w, φ)

(1− w)k−1
.

Hence “RJMCMC→BDMCMC”. This holds more generally.
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Example (HMM models (cont’d))

Implementation of the split-and-combine rule of Richardson and
Green (1997) in continuous time
Move to split component j∗ into j1 and j2:

ωij1 = ωij∗εi, ωij2 = ωij∗(1− εi), εi ∼ U(0, 1);

ωj1j = ωj∗jξj , ωj2j = ωj∗j/ξj , ξj ∼ logN (0, 1);

similar ideas give ωj1j2 etc.;

µj1 = µj∗ − 3σj∗εµ, µj2 = µj∗ + 3σj∗εµ, εµ ∼ N (0, 1);

σ2
j1 = σ2

j∗ξσ, σ2
j2 = σ2

j∗/ξσ, ξσ ∼ logN (0, 1).

[Cappé & al, 2001]
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Wind intensity in Athens
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Histogram and rawplot of 500 wind intensities in Athens
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MCMC evaluation of the marginal density of the dataset
(dashes), compared with R nonparametric density estimate
(solid lines).
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Sequential importance sampling

basic importance

Further Topics
MCMC tools for variable dimension problems
Introduction
Green’s method
Birth and Death processes
Sequential importance sampling
Adaptive MCMC
Importance sampling revisited
Dynamic extensions
Population Monte Carlo
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Adaptive MCMC

Adaptive MCMC is not possible

 Algorithms trained on-line usually invalid:
using the whole past of the “chain” implies that this is not a
Markov chain any longer!
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Adaptive MCMC

Example (Poly t distribution)

Consider a t-distribution T (3, θ, 1) sample (x1, . . . , xn) with a flat
prior π(θ) = 1
If we try fit a normal proposal from empirical mean and variance of
the chain so far,

µt =
1

t

t∑
i=1

θ(i) and σ2
t =

1

t

t∑
i=1

(θ(i) − µt)2 ,

Metropolis–Hastings algorithm with acceptance probability

n∏
j=2

[
ν + (xj − θ(t))2

ν + (xj − ξ)2

]−(ν+1)/2
exp−(µt − θ(t))2/2σ2

t

exp−(µt − ξ)2/2σ2
t

,

where ξ ∼ N (µt, σ
2
t ).
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Example (Poly t distribution (2))

Invalid scheme:

I when range of initial values too small, the θ(i)’s cannot
converge to the target distribution and concentrates on too
small a support.

I long-range dependence on past values modifies the
distribution of the sequence.

I using past simulations to create a non-parametric
approximation to the target distribution does not work either
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Adaptive scheme for a sample of 10 xj ∼ T3 and initial
variances of (top) 0.1, (middle) 0.5, and (bottom) 2.5.
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Comparison of the distribution of an adaptive scheme sample
of 25, 000 points with initial variance of 2.5 and of the target
distribution.
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with the target distribution.
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Adaptive MCMC

Simply forget about it!

Warning:
One should not constantly adapt the proposal on past
performances

Either adaptation ceases after a period of burnin
or the adaptive scheme must be theoretically assessed on its own
right.
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Importance sampling revisited

Approximation of integrals back to basic importance

I =

∫
h(x)π(x)dx

by unbiased estimators

Î =
1

n

n∑
i=1

%ih(xi)

when

x1, . . . , xn
iid∼ q(x) and %i

def
=

π(xi)

q(xi)
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Markov extension
For densities f and g, and importance weight

ω(x) = f(x)/g(x) ,

for any kernel K(x, x′) with stationary distribution f ,∫
ω(x)K(x, x′) g(x)dx = f(x′) .

[McEachern, Clyde, and Liu, 1999]
Consequence: An importance sample transformed by MCMC
transitions keeps its weights
Unbiasedness preservation:

E
[
ω(X)h(X ′)

]
=

∫
ω(x)h(x′)K(x, x′) g(x) dx dx′

= Ef [h(X)]
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Not so exciting!

The weights do not change!

If x has small weight

ω(x) = f(x)/g(x) ,

then
x′ ∼ K(x, x′)

keeps this small weight.
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Pros and cons of importance sampling vs. MCMC

I Production of a sample (IS) vs. of a Markov chain (MCMC)

I Dependence on importance function (IS) vs. on previous value
(MCMC)

I Unbiasedness (IS) vs. convergence to the true distribution
(MCMC)

I Variance control (IS) vs. learning costs (MCMC)

I Recycling of past simulations (IS) vs. progressive adaptability
(MCMC)

I Processing of moving targets (IS) vs. handling large
dimensional problems (MCMC)

I Non-asymptotic validity (IS) vs. difficult asymptotia for
adaptive algorithms (MCMC)
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Dynamic importance sampling

Idea

It is possible to generalise importance sampling using random
weights ωt such that

E[ωt|xt] = π(xt)/g(xt)
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(a) Self-regenerative chains
[Sahu & Zhigljavsky, 1998; Gasemyr, 2002]

Proposal
Y ∼ p(y) ∝ p̃(y)

and target distribution π(y) ∝ π̃(y)
Ratios

ω(x) = π(x)/p(x) and ω̃(x) = π̃(x)/p̃(x)

Unknown Known

Acceptance function

α(x) =
1

1 + κω̃(x)
κ > 0
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Geometric jumps

Theorem

If
Y ∼ p(y)

and
W |Y = y ∼ G (α(y)) ,

then
Xt = · · · = Xt+W−1 = Y 6= Xt+W

defines a Markov chain with stationary distribution π



Markov Chain Monte Carlo Methods

Further Topics

Dynamic extensions

Plusses

I Valid for any choice of κ [κ small = large variance and κ large
= slow convergence]

I Only depends on current value [Difference with Metropolis]

I Random integer weight W [Similarity with Metropolis]

I Saves on the rejections: always accept [Difference with
Metropolis]

I Introduces geometric noise compared with importance
sampling

σ2
SZ = 2σ2

IS+(1/κ)σ2
π

I Can be used with a sequence of proposals pk and constants
κk [Adaptativity]
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A generalisation

[Gåsemyr, 2002]

Proposal density p(y) and probability q(y) of accepting a jump.

Algorithm (Gåsemyr’s dynamic weights)

Generate a sequence of random weights Wn by

1. Generate Yn ∼ p(y)

2. Generate Vn ∼ B(q(yn))

3. Generate Sn ∼ Geo(α(yn))

4. Take Wn = VnSn
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Validation

direct to PMC

φ(y) =
p(y)q(y)∫
p(y)q(y)dy

,

the chain (Xt) associated with the sequence (Yn,Wn) by

Y1 = X1 = · · · = X1+W1−1, Y2 = X1+W1 = · · ·

is a Markov chain with transition

K(x, y) = α(x)φ(y)

which has a point mass at y = x with weight 1− α(x).
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Ergodicity for Gåsemyr’s scheme

Necessary and sufficient condition

π is stationary for (Xt) iff

α(y) = q(y)/(κπ(y)/p(y)) = q(y)/(κw(y))

for some constant κ.

Implies that
E[Wn|Y n = y] = κw(y) .

[Average importance sampling]
Special case: α(y) = 1/(1 +κw(y)) of Sahu and Zhigljavski (2001)
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Properties

Constraint on κ: for α(y) ≤ 1, κ must be such that

p(y)q(y)

π(y)
≤ κ

Reverse of accept-reject conditions (!)
Variance of ∑

n

Wnh(Yn)/
∑
n

Wn (4)

is

2

∫
(h(y)− µ)2

q(y)
w(y)π(y)dy − (1/κ)σ2

π ,

by Cramer-Wold/Slutsky
Still worse than importance sampling.
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(b) Dynamic weighting
[Wong & Liang, 1997; Liu, Liang & Wong, 2001; Liang, 2002]

direct to PMC

Generalisation of the above: simultaneous generation of points
and weights, (θt, ωt), under the constraint

E[ωt|θt] ∝ π(θt) (5)

Same use as importance sampling weights
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Algorithm (Liang’s dynamic importance sampling)

1. Generate y ∼ K(x, y) and compute

% = ω
π(y)K(y, x)

π(x)K(x, y)

2. Generate u ∼ U(0, 1) and take

(x′, ω′) =

{
(y, (1 + δ)%/a) if u < a

(x, (1 + δ)ω/(1− a) otherwise

where a = %/(%+ θ), θ = θ(x, ω), and δ > 0 constant or
independent rv
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Preservation of the equilibrium equation
If g− and g+ denote the distributions of the augmented variable
(X,W ) before the step and after the step, respectively, then∫ ∞

0
ω
′
g+(x

′
, ω
′
) dω
′
=

∫
(1 + δ)

[
%(ω, x, x

′
) + θ

]
g−(x, ω)K(x, x

′
)

%(ω, x, x′)

%(ω, x, x′) + θ
dx dω

+

∫
(1 + δ)

ω(%(ω, x′, z) + θ)

θ
g−(x

′
, ω)K(x, z)

θ

%(ω, x′, z) + θ
dz dω

= (1 + δ)

{∫
ω g−(x, ω)

π(x′)K(x′, x)

π(x)
dx dω

+

∫
ω g−(x

′
, ω)K(x

′
, z) dz dω

}
= (1 + δ)

{
π(x
′
)

∫
c0K(x

′
, x) dx + c0π(x

′
)

}
= 2(1 + δ)c0π(x

′
) ,

where c0 proportionality constant
Expansion phenomenon

E[ωt+1] = 2(1 + δ)E[ωt]
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Special case: R-move

[Liang, 2002]

δ = 0 and θ ≡ 1, and thus

(x′, ω′) =

{
(y, %+ 1) if u < %/(%+ 1)

(x, ω(%+ 1)) otherwise,

[Importance sampling]
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Special case: W -move

θ ≡ 0, thus a = 1 and

(x′, ω′) = (y, %) .

Q-move
[Liu & al, 2001]

(x′, ω′) =

{
(y, θ ∨ %) if u < 1 ∧ %/θ ,
(x, aω) otherwise,

with a ≥ 1 either a constant or an independent random variable.
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Notes

I Updating step in Q and R schemes written as

(xt+1, ωt+1) = {xt, ωt/Pr(Rt = 0)}

with probability Pr(Rt = 0) and

(xt+1, ωt+1) = {yt+1, ωtr(xt, yt+1)/Pr(Rt = 1)}

with probability Pr(Rt = 1), where Rt is the move indicator
and

yt+1 ∼ K(xt, y)
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Notes (2)

I Geometric structure of the weights

Pr(Rt = 0) =
ωt
ωt+1

.

and

Pr(Rt = 0) =
ωt r(xt, yt)

ωt r(xt, yt) + θ
, θ > 0 ,

for the R scheme

I Number of steps T before an acceptance (a jump) such that

Pr (T ≥ t) = P (R1 = 0, . . . , Rt−1 = 0)

= E

t−1∏
j=0

ωj
ωj+1

 ∝ E[1/ωt] .
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Alternative scheme

Preservation of weight expectation:

(xt+1, ωt+1) =


(xt, αtωt/Pr(Rt = 0))

with probability Pr(Rt = 0) and

(yt+1, (1− αt)ωtr(xt, yt+1)/Pr(Rt = 1))

with probability Pr(Rt = 1).
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Alternative scheme (2)

Then

Pr (T = t) = P (R1 = 0, . . . , Rt−1 = 0, Rt = 1)

= E

t−1∏
j=0

αj
ωj
ωj+1

(1− αt)
ωt−1r(x0, Yt)

ωt


which is equal to

αt−1(1− α)E[ωo r(x, Yt)/ωt]

when αj constant and deterministic.
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Example

Choose a function 0 < β(·, ·) < 1 and to take, while in (x0, ω0),

(x1, ω1) =

(
y1,

ω0r(x0, y1)

α(x0, y1)
(1− β(x0, y1)

)
with probability

min(1, ω0r(x0, y1))
∆
= α(x0, y1)

and

(x1, ω1) =

(
x0,

ω0

1− α(x0, y1)
× β(x0, y1)

)
with probability 1− α(x0, y1).
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Population Monte Carlo

Population Monte Carlo

Idea

Simulate from the product distribution

π
⊗
n(x1, . . . , xn) =

n∏
i=1

π(xi)

and apply dynamic importance sampling to the sample
(a.k.a. population)

x(t) = (x
(t)
1 , . . . , x(t)

n )
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Iterated importance sampling

As in Markov Chain Monte Carlo (MCMC) algorithms,
introduction of a temporal dimension :

x
(t)
i ∼ qt(x|x

(t−1)
i ) i = 1, . . . , n, t = 1, . . .

and

Ît =
1

n

n∑
i=1

%
(t)
i h(x

(t)
i )

is still unbiased for

%
(t)
i =

πt(x
(t)
i )

qt(x
(t)
i |x

(t−1)
i )

, i = 1, . . . , n
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Fundamental importance equality

Preservation of unbiasedness

E
[
h(X(t))

π(X(t))

qt(X(t)|X(t−1))

]

=

∫
h(x)

π(x)

qt(x|y)
qt(x|y) g(y) dx dy

=

∫
h(x)π(x) dx

for any distribution g on X(t−1)
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Sequential variance decomposition

Furthermore,

var
(
Ît

)
=

1

n2

n∑
i=1

var
(
%

(t)
i h(x

(t)
i )
)
,

if var
(
%

(t)
i

)
exists, because the x

(t)
i ’s are conditionally uncorrelated

Note

This decomposition is still valid for correlated [in i] x
(t)
i ’s when

incorporating weights %
(t)
i
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Simulation of a population

The importance distribution of the sample (a.k.a. particles) x(t)

qt(x
(t)|x(t−1))

can depend on the previous sample x(t−1) in any possible way as
long as marginal distributions

qit(x) =

∫
qt(x

(t)) dx
(t)
−i

can be expressed to build importance weights

%it =
π(x

(t)
i )

qit(x
(t)
i )
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Special case of the product proposal

If

qt(x
(t)|x(t−1)) =

n∏
i=1

qit(x
(t)
i |x

(t−1))

[Independent proposals]
then

var
(
Ît

)
=

1

n2

n∑
i=1

var
(
%

(t)
i h(x

(t)
i )
)
,
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Validation

skip validation

E
[
%

(t)
i h(X

(t)
i ) %

(t)
j h(X

(t)
j )
]

=

∫
h(xi)

π(xi)

qit(xi|x(t−1))

π(xj)

qjt(xj |x(t−1))
h(xj)

qit(xi|x(t−1)) qjt(xj |x(t−1)) dxi dxj g(x(t−1))dx(t−1)

= Eπ [h(X)]2

whatever the distribution g on x(t−1)
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Self-normalised version

In general, π is unscaled and the weight

%
(t)
i ∝

π(x
(t)
i )

qit(x
(t)
i )

, i = 1, . . . , n ,

is scaled so that ∑
i

%
(t)
i = 1
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Self-normalised version properties

I Loss of the unbiasedness property and the variance
decomposition

I Normalising constant can be estimated by

$t =
1

tn

t∑
τ=1

n∑
i=1

π(x
(τ)
i )

qiτ (x
(τ)
i )

I Variance decomposition (approximately) recovered if $t−1 is
used instead
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Sampling importance resampling

Importance sampling from g can also produce samples from the
target π

[Rubin, 1987]

Theorem (Bootstraped importance sampling)

If a sample (x?i )1≤i≤m is derived from the weighted sample
(xi, %i)1≤i≤n by multinomial sampling with weights %i, then

x?i ∼ π(x)

Note

Obviously, the x?i ’s are not iid



Markov Chain Monte Carlo Methods

Further Topics

Population Monte Carlo

Iterated sampling importance resampling

This principle can be extended to iterated importance sampling:
After each iteration, resampling produces a sample from π

[Again, not iid!]

Incentive

Use previous sample(s) to learn about π and q
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Generic Population Monte Carlo

Algorithm (Population Monte Carlo Algorithm)

For t = 1, . . . , T

For i = 1, . . . , n,

1. Select the generating distribution qit(·)
2. Generate x̃

(t)
i ∼ qit(x)

3. Compute %
(t)
i = π(x̃

(t)
i )/qit(x̃

(t)
i )

Normalise the %
(t)
i ’s into %̄

(t)
i ’s

Generate Ji,t ∼M((%̄
(t)
i )1≤i≤N ) and set xi,t = x̃

(t)
Ji,t
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D-kernels in competition

A general adaptive construction:

Construct qi,t as a mixture of D different transition kernels

depending on x
(t−1)
i

qi,t =

D∑
`=1

pt,`K`(x
(t−1)
i , x),

D∑
`=1

pt,` = 1 ,

and adapt the weights pt,`.

Example

Take pt,` proportional to the survival rate of the points

(a.k.a. particles) x
(t)
i generated from K`
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Implementation

Algorithm (D-kernel PMC)

For t = 1, . . . , T

generate (Ki,t)1≤i≤N ∼M ((pt,k)1≤k≤D)

for 1 ≤ i ≤ N , generate

x̃i,t ∼ KKi,t(x)

compute and renormalize the importance weights ωi,t

generate (Ji,t)1≤i≤N ∼M ((ωi,t)1≤i≤N )

take xi,t = x̃Ji,t,t and pt+1,d =
∑N

i=1 ω̄i,tId(Ki,t)
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Links with particle filters

I Usually setting where π = πt changes with t: Population
Monte Carlo also adapts to this case

I Can be traced back all the way to Hammersley and Morton
(1954) and the self-avoiding random walk problem

I Gilks and Berzuini (2001) produce iterated samples with (SIR)
resampling steps, and add an MCMC step: this step must use
a πt invariant kernel

I Chopin (2001) uses iterated importance sampling to handle
large datasets: this is a special case of PMC where the qit’s
are the posterior distributions associated with a portion kt of
the observed dataset
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Links with particle filters (2)

I Rubinstein and Kroese’s (2004) cross-entropy method is
parameterised importance sampling targeted at rare events

I Stavropoulos and Titterington’s (1999) smooth bootstrap and
Warnes’ (2001) kernel coupler use nonparametric kernels on
the previous importance sample to build an improved
proposal: this is a special case of PMC

I West (1992) mixture approximation is a precursor of smooth
bootstrap

I Mengersen and Robert (2002) “pinball sampler” is an MCMC
attempt at population sampling

I Del Moral and Doucet (2003) sequential Monte Carlo
samplers also relates to PMC, with a Markovian dependence
on the past sample x(t) but (limited) stationarity constraints
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Things can go wrong

Unexpected behaviour of the mixture weights when the number of
particles increases

N∑
i=1

ω̄i,tIKi,t=d−→P
1

D

Conclusion

At each iteration, every weight converges to 1/D:
the algorithm fails to learn from experience!!
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Saved by Rao-Blackwell!!

Modification: Rao-Blackwellisation (=conditioning)

Use the whole mixture in the importance weight:

ωi,t = π(x̃i,t)

D∑
d=1

pt,dKd(xi,t−1, x̃i,t)

instead of

ωi,t =
π(x̃i,t)

KKi,t(xi,t−1, x̃i,t)
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Adapted algorithm

Algorithm (Rao-Blackwellised D-kernel PMC)

At time t (t = 1, . . . , T ),

Generate
(Ki,t)1≤i≤N

iid∼ M((pt,d)1≤d≤D);

Generate
(x̃i,t)1≤i≤N

ind∼ KKi,t(xi,t−1, x)

and set ωi,t = π(x̃i,t)

/∑D
d=1 pt,dKd(xi,t−1, x̃i,t);

Generate
(Ji,t)1≤i≤N

iid∼ M((ω̄i,t)1≤i≤N )

and set xi,t = x̃Ji,t,t and pt+1,d =
∑N

i=1 ω̄i,tpt,d.
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Convergence properties

Theorem (LLN)

Under regularity assumptions, for h ∈ L1
Π and for every t ≥ 1,

1

N

N∑
k=1

ω̄i,th(xi,t)
N→∞−→P Π(h)

and
pt,d

N→∞−→P α
t
d

The limiting coefficients (αtd)1≤d≤D are defined recursively as

αtd = αt−1
d

∫ (
Kd(x, x

′)∑D
j=1 α

t−1
j Kj(x, x′)

)
Π⊗Π(dx, dx′).
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Recursion on the weights

Set F as

F (α) =

(
αd

∫ [
Kd(x, x

′)∑D
j=1 αjKj(x, x

′)

]
Π⊗Π(dx, dx′)

)
1≤d≤D

on the simplex

S =

{
α = (α1, . . . , αD); ∀d ∈ {1, . . . , D}, αd ≥ 0 and

D∑
d=1

αd = 1

}
.

and define the sequence

αt+1 = F (αt)
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Kullback divergence

Definition (Kullback divergence)

For α ∈ S,

KL(α) =

∫ [
log

(
π(x)π(x′)

π(x)
∑D

d=1 αdKd(x, x
′)

)]
Π⊗Π(dx, dx′).

Kullback divergence between Π and the mixture.

Goal: Obtain the mixture closest to Π, i.e., that minimises KL(α)
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Connection with RBDPMCA ??

Theorem

Under the assumption

∀d ∈ {1, . . . , D},−∞ <

∫
log(Kd(x, x

′))Π⊗Π(dx, dx′) <∞

for every α ∈ SD,

KL(F (α)) ≤ KL(α).

Conclusion

The Kullback divergence decreases at every iteration of RBDPMCA
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An integrated EM interpretation
skip interpretation

We have

αmin = arg min
α∈S

KL(α) = arg max
α∈S

∫
log pα(x̄)Π⊗Π(dx̄)

= arg max
α∈S

∫
log

∫
pα(x̄,K)dK Π⊗Π(dx̄)

for x̄ = (x, x′) and K ∼M((αd)1≤d≤D). Then αt+1 = F (αt)
means

αt+1 = arg max
α

∫∫
Eαt(log pα(X̄,K)|X̄ = x̄)Π⊗Π(dx̄)

and
lim
t→∞

αt = αmin



Markov Chain Monte Carlo Methods

Further Topics

Population Monte Carlo

Illustration

Example (A toy example)

Take the target

1/4N (−1, 0.3)(x) + 1/4N (0, 1)(x) + 1/2N (3, 2)(x)

and use 3 proposals: N (−1, 0.3), N (0, 1) and N (3, 2)
[Surprise!!!]

Then

1 0.0500000 0.05000000 0.9000000
2 0.2605712 0.09970292 0.6397259
6 0.2740816 0.19160178 0.5343166
10 0.2989651 0.19200904 0.5090259
16 0.2651511 0.24129039 0.4935585

Weight evolution
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Target and mixture evolution
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Example : PMC for mixtures

Observation of an iid sample x = (x1, . . . , xn) from

pN (µ1, σ
2) + (1− p)N (µ2, σ

2),

with p 6= 1/2 and σ > 0 known.
Usual N (θ, σ2/λ) prior on µ1 and µ2:

π(µ1, µ2|x) ∝ f(x|µ1, µ2)π(µ1, µ2)
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Algorithm (Mixture PMC)

Step 0: Initialisation

For j = 1, . . . , n = pm, choose (µ1)
(0)
j , (µ2)

(0)
j

For k = 1, . . . , p, set rk = m

Step i: Update (i = 1, . . . , I)

For k = 1, . . . , p,

1. generate a sample of size rk as

(µ1)
(i)
j ∼ N

(
(µ1)

(i−1)
j , vk

)
and (µ2)

(i)
j ∼ N

(
(µ2)

(i−1)
j , vk

)
2. compute the weights

%j ∝
f
(
x
∣∣∣(µ1)

(i)
j , (µ2)

(i)
j

)
π
(

(µ1)
(i)
j , (µ2)

(i)
j

)
ϕ
(

(µ1)
(i)
j

∣∣∣(µ1)
(i−1)
j , vk

)
ϕ
(

(µ2)
(i)
j

∣∣∣(µ2)
(i−1)
j , vk

)
Resample the

(
(µ1)

(i)
j , (µ2)

(i)
j

)
j

using the weights %j ,

For k = 1, . . . , p,

update rk as the number of elements generated with variance
vk which have been resampled.
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Details

After an arbitrary initialisation, use of the previous (importance)
sample (after resampling) to build random walk proposals,

N ((µ)
(i−1)
j , vj)

with a multiscale variance vj within a predetermined set of p scales
ranging from 103 down to 10−3, whose importance is proportional
to its survival rate in the resampling step.
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