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Problem 1 ......

/
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Let f and g be densities with respect to the Lebesgue measure on R such that

∀x ∈R, f (x) = c f̃ (x) and g (x) = d g̃ (x),

where both positive functions f̃ and g̃ are known and computable, and both constants c and d are unknown. For
questions 1. to 4., we consider the special case of an interval ]a ,b[ ⊂R such that

∀x ∉]a,b[, f̃ (x) = 0 and sup
x∈R

f̃ (x) = M <∞.

1. Considering U = (U1,U2) a uniform random point on R = ]a ,b[ × ]0 , M [, compute the probability
P

[
U2 ≤ f̃ (U1)

]
. Given an i.i.d. sequence U 1, . . . ,U n , n ∈N∗, of uniform random points on R, deduce a converging

estimator of c, ĉn , and justify the convergence of ĉn in n.

On a

P
[
U2 ≤ f̃ (U1)

]= 1

M(b −a)

∫ b

a

∫ f̃ (u1)

0
du2du1 = 1

M(b −a)

∫ b

a
f̃ (u1)du1 = 1

cM(b −a)
.

2. Is this estimator ĉn unbiased?

3. Let df(x) be a vectorised R function that computes f̃ (x). Write an R code that computes ĉn .

From now on, it is no longer assumed that f is bounded and has bounded support. Nevertheless, we assume
from now on that {x ∈R | f (x) = 0} ⊆ {x ∈R | g (x) = 0}.

4. Let X be a random variable with density f . Show that E
[
g̃ (X )

/
f̃ (X )

]= c
/

d .

5. Given an i.i.d. sequence X1, . . . , Xn of random variables with density f , deduce from question 4. a converging
estimator of c

/
d .

6. Let α(·) be a positive function on R such that∫
R
α(x) f̃ (x)g̃ (x)dx <+∞.

Show that if X is a random variable with density f and Y a random variable with density g , then

E
[
α(X )g̃ (X )

]/
E
[
α(Y ) f̃ (Y )

]= c
/

d .
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7. Deduce from the previous question a converging estimator of c
/

d based on two sequences X1, . . . , Xn and
Y1, . . . ,Yn of i.i.d. random variables with density f and g , respectively. Justify the convergence of this estimator
and provide a corresponding R function ratiof(n).

We now assume that d is known. For an arbitrary ω> 0, we further consider the special case when the auxiliary
target density h(x) ∝ f̃ (x)+ωg (x) can be simulated, even though its normalising constant is unknown, that is,
there exists an R function mixt(N) that returns N i.i.d. realisations with density h(·).

8. Show that a sample from f (·) can be extracted as a random subsample of an existing N -sample from h(·)—for
instance, produced as mixt(N)—. What is the expected size of this subsample as a function of N ?

9. Construct a valid algorithm that partitions an N -sample from h(·) into (i) a sample from g (·) and (ii) a sample
from f (·). Deduce a converging estimator of the constant c.

Problem 2 ......

/
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Let 0 <α< 1 be the shape parameter of the Gamma distribution Ga(α,1), with density

f (x;α) = 1

Γ(α)
xα−1 exp{−x} x > 0

The goal is simulate from this distribution using a Generalized Exponential distribution GE(α,λ), with density

g (x;α,λ) = α

λ

(
1−e−x/λ

)α−1
e−x/λ λ, x > 0

We aim at sampling from f using the accept-reject algorithm with g (·;α,λ) as proposal density.

1. Provide the CDF attached to g (·;α,λ) and deduce the normalizing constant of g (·;α,λ) is correct.

2. Deduce a practical way to generate a random variable with density g (·;α,λ).

3. Show that

f (x;α) = 1

Γ(α+1)
R(x)g (x;α,1) x > 0 (1)

with

R(x) =
( x

1−e−x

)α−1
x > 0

and establish that 0 < R(x) ≤ 1 for x ≥ 0.

4. Construct an accept-reject algorithm to simulate f (·;α) using g (·;α,1) by providing the acceptance bound on
the uniform variate. Indicate the expected number of proposals needed to accept one realisation.
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5. Write an executable R code of this algorithm as an R function zeini(N,alpha) with inputs N, the number of
simulations, and alpha, the Ga(α,1) shape parameter.

6. Since R(·) satisfies (no proof required!)

4− (1−α)x

4+ (1−α)x
≤ R(x) ≤ 4+αx

4−αx

deduce a faster accept-reject algorithm and write a corresponding R function squezze(N,alpha).

7. Since the choice λ = 1 made above in the proposal is arbitrary, other values of λ could lead to a higher ef-
ficiency. Give a precise mathematical meaning to “higher efficiency" and describe how you would run a Monte
Carlo experiment to compare the choices λ= 1/2 and λ= 2. (Bonus: Write the associated R code.)

Problem 3 ......

/
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We revisit the simulation of upper truncated Normal N+(a) random variables, a > 0, with density

f (x; a) ∝ exp{−x2/2}I(a,∞)(x) x ∈R

where the proportionality symbol is applying to both sides as functions of x.

1. Recall here (i) the exact value of the normalizing constant of f (·; a) and (ii) a standard accept-reject algorithm
based on an Exponential proposal translated by a, as seen in class.

2. Derive the density of Z = X 2 when X ∼ N+(a) and show that an acceptance-rejection simulation of Z is
possible when using as proposal an Exponential E(1/2) random variable translated by a2.

3. Deduce an acceptance-rejection algorithm for the simulation of X ∼ N+(a) and provide an associated R func-
tion marsa(N,a) with inputs N, the number of simulations, and a, the N+(a) truncation parameter. (Bonus: Write
a version with no for, no while and no repeat loop.)

4. What is the average acceptance probability ϱ(a) for this algorithm? Given the following asymptotic approxi-
mation (when a goes to ∞) of the Normal cdf

Φ(−a) ≈ e−a2/2(a−1 −a−3)

give an asymptotic approximation of ϱ(a).
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5. An R experiment on the respective performances of both marsa and truncnorm (the standard algorithm) re-
turns the following execution times:
function user system total
truncnorm 0.329 0.011 0.341
function user system total
mars 0.150 0.024 0.174
What is the conclusion of this comparison?
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