Pauphine | PSL*

UNIVERSITE PARIS Méthodes de Monte Carlo
MIDO - Master 1 Mathématique & Applications, 2022- Final Exam - 10/01/2023
2023 3H00 — DOCUMENTS AND CALCULATOR NOT ALLOWED
Problem1 | / 9

Let f and g be densities with respect to the Lebesgue measure on R such that
VxeR, f(x)=cf(x) and g(x)=dgXx),

where both positive functions f and g are known and computable, and both constants ¢ and d are unknown. For
questions 1. to 4., we consider the special case of an interval ]a, b[ c R such that

Vx¢la,bl, f(x)=0 and sup f(x)=M <oco.

xeR

1. Considering U = (U;,U,) a uniform random point on £ = ]a,b[ x |0, M[, compute the probability
P[U, < f(Uy)]. Given an i.i.d. sequence U',...,U", n € N*, of uniform random points on %, deduce a converging
estimator of ¢, ¢, and justify the convergence of ¢, in n.
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2. Isthis estimator ¢;,, unbiased?

3. Letdf (x) be avectorised R function that computes f(x). Write an R code that computes &,.

From now on, it is no longer assumed that f is bounded and has bounded support. Nevertheless, we assume
from nowon that {xeR| f(x) =0} < {x e R| g(x) = 0}.

4. Let X be arandom variable with density f. Show that E[§(X)/f(X)] = ¢/d.

5. Given an i.i.d. sequence Xj,..., X,, of random variables with density f, deduce from question 4. a converging
estimator of ¢/d.

6. Let a(-) be a positive function on R such that

f a(x) f(x)g(x)dx < +oo.
R
Show that if X is a random variable with density f and Y a random variable with density g, then

E[a0g00] [E[an V)] =c/d.




7. Deduce from the previous question a converging estimator of ¢/d based on two sequences Xj, ..., X, and
Y1,..., Y, of i.i.d. random variables with density f and g, respectively. Justify the convergence of this estimator
and provide a corresponding R function ratiof (n).

We now assume that d is known. For an arbitrary w > 0, we further consider the special case when the auxiliary
target density h(x) ox f(x) + wg(x) can be simulated, even though its normalising constant is unknown, that is,
there exists an R function mixt(N) that returns N i.i.d. realisations with density &(-).

8. Show that a sample from f(-) can be extracted as a random subsample of an existing N-sample from h(-)—for
instance, produced as mixt(N)—. What is the expected size of this subsample as a function of N?

9. Construct a valid algorithm that partitions an N-sample from k(-) into (i) a sample from g(:) and (ii) a sample
from f(-). Deduce a converging estimator of the constant c.
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Let 0 < a < 1 be the shape parameter of the Gamma distribution Ga(a, 1), with density
flxa) = an_lexp{—x} x>0
’ I'(a)

The goal is simulate from this distribution using a Generalized Exponential distribution GE(a, A), with density
a a-1
glx;a,A) = Z(l—e_xm) e ** A,x>0

We aim at sampling from f using the accept-reject algorithm with g(-; &, 1) as proposal density.

1. Provide the CDF attached to g(-; a, 1) and deduce the normalizing constant of g(:; @, A) is correct.

2. Deduce a practical way to generate a random variable with density g(-; &, 1).

3. Show that
fxa)=

1
F(a+1)R(x)g(x’ a,l) x>0 (D)

with

RG = )“_1 x>0

I-e™*
and establish that 0 < R(x) <1 for x=0.

4. Construct an accept-reject algorithm to simulate f(-; ) using g(-; @, 1) by providing the acceptance bound on
the uniform variate. Indicate the expected number of proposals needed to accept one realisation.




5. Write an executable R code of this algorithm as an R function zeini(N,alpha) with inputs N, the number of
simulations, and alpha, the Ga(a, 1) shape parameter.

6. Since R(:) satisfies (no proofrequired!)

41—-(1-a)x
——— <R =
4+(1-a)x 4—ax

deduce a faster accept-reject algorithm and write a corresponding R function squezze(N,alpha).

7. Since the choice A = 1 made above in the proposal is arbitrary, other values of A could lead to a higher ef-
ficiency. Give a precise mathematical meaning to “higher efficiency" and describe how you would run a Monte
Carlo experiment to compare the choices A =1/2 and A = 2. (Bonus: Write the associated R code.)
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We revisit the simulation of upper truncated Normal N* (@) random variables, a > 0, with density
f(x;a) x exp{—x°/2}l(goe)(¥)  XER
where the proportionality symbol is applying to both sides as functions of x.

1. Recall here (i) the exact value of the normalizing constant of f(-; a) and (ii) a standard accept-reject algorithm
based on an Exponential proposal translated by a, as seen in class.

2. Derive the density of Z = X? when X ~ N*(a) and show that an acceptance-rejection simulation of Z is
possible when using as proposal an Exponential E(1/2) random variable translated by a?.

3. Deduce an acceptance-rejection algorithm for the simulation of X ~ N*(a) and provide an associated R func-
tion marsa(N,a) with inputs N, the number of simulations, and a, the N* (a) truncation parameter. (Bonus: Write
a version with no for, no while and no repeat loop.)

4. What is the average acceptance probability p(a) for this algorithm? Given the following asymptotic approxi-
mation (when a goes to co) of the Normal cdf

@(_a) ~ e—aZ/Z(a—l _ a—g)

give an asymptotic approximation of p(a).




r

5. An R experiment on the respective performances of both marsa and truncnorm (the standard algorithm) re-
turns the following execution times:

function user system total

truncnorm 0.329 0.011 0.341

function user system total

mars 0.150 0.024 0.174

What is the conclusion of this comparison?




