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A discussion paper on the fast-growing technique of ABC techniques is quite
timely, especially when it addresses the important issue of summary statistics
used by such methods. I thus congratulate the authors on their endeavour.

While ABC has been gradually been analysed from a (mainstream) statistical
perspective, this is one of the very first papers performing a decision-theoretic
analysis of the factors influencing the performances of the method (along with,
e.g., Dean et al., 2011). Indeed, a very interesting input of the authors is
that ABC is considered there from a purely inferential viewpoint and calibrated
for estimation purposes. The most important result therein is in my opinion
the consistency result in Theorem 2, which shows that noisy ABC is a coherent
estimation method when the number of observations grows to infinity. I however
dispute the generality of the result, as explained below.

Fearnhead and Prangle do not follow the usual perspective of looking at
ABC as a converging (both in N and h) approximation to the true posterior
density. Instead, they consider a randomised (or noisy) version of the summary
statistics

sobs = S(yobs) + hx , x ∼ K(x)

and they derive a calibrated version of ABC, i.e. an algorithm that gives “proper”
predictions, but only for the (pseudo-)posterior based upon this randomised ver-
sion of the summary statistics. This randomisation however conflicts with the
Bayesian paradigm in that it seems to require adding pure noise to the observa-
tion to conduct inference. Furthermore, Theorem 2 is valid for any value of h. I
thus wonder at the overall statistical meaning of calibration, since even the prior
distribution (corresponding to h = +∞) is calibrated. while the most informa-
tive (or least randomised) case (ABC) is not necessarily calibrated. Nonetheless,
the interesting aspect of this switch of perspective is that the kernel K used in
the acceptance probability, with bandwidth h,

K((s− sobs)/h) ,

need not behave like an estimate of the true sampling density since it appears
in the (randomised) pseudo-model.

In the authors’ setting, the Monte Carlo error that is inherent to ABC is
taken into account through the average acceptance probability, which collapses
to zero when h goes to zero, meaning that h = 0 is a suboptimal choice. This
is a strong (and valid) point of the paper because this means that the “opti-
mal” value of h is not zero, a point repeated later in this report. The later
decomposition of the error into

trace(AΣ) + h2
∫
xTAxK(x)dx+

C0

Nhd

is very similar to error decompositions found in (classical) non-parametric statis-
tics. In this respect, I do fail to understand the argument of the authors that
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Lemma 1 implies that a summary statistics with larger dimension also has larger
Monte Carlo error: Given that π(sobs) also depends on h, the appearance of hd

in eqn. (6) is not enough of an argument. There actually is a larger issue I also
have against several recent papers on the topic, where h or ε is treated as a
given or absolute number when it should be calibrated in terms of a number of
statistical and computational factors, the number of summary statistics being
one of them.

When the authors consider the errors made in using ABC, balancing the
Monte Carlo error due to simulation with the ABC error due to approximation
(and non-zero tolerance), they fail to account for “the third man” in the picture,
namely the error made in replacing the (exact) posterior inference based on yobs

with the (exact) posterior inference based on sobs, i.e. for the loss of information
due to the use of the summary statistics at the centre of the Read Paper. (As
shown in Robert et al., 2011, this loss may be quite extreme as to the resulting
inference to become inconsistent.) While the remarkable (and novel) result in
the proof of Theorem 3 that

E{θ|E[θ|yobs]} = E[θ|yobs]

shows that sobs = E[θ|yobs] does not loose any (first-order) information when
compared with yobs, hence is “almost” sufficient in that weak sense, Theorem 3
only considers a specific estimation aspect, rather than full Bayesian inference,
and is furthermore parameterisation dependent. In addition, the second part of
the theorem should be formulated in terms of the above identity, as ABC plays
no role when h = 0.

If we concentrate more specifically on the mathematical aspects of the paper,
a point of the utmost importance is that Theorem 2 can only hold at best when θ
is identifiable for the distribution sobs. Otherwise, some other values of θ satisfy
p(θ|sobs) = p(θ0|sobs). Considering the specific case of an ancilary statistic sobs
clearly shows the result cannot hold in full generality. Therefore, vital assump-
tions are clearly missing to achieve a rigorous formulation of this theorem. The
call to Bernardo and Smith, 1994 is thus not really relevant in this setting as
the convergence results therein require conditions on the likelihood that are not
necessarily verified by the distribution of sobs. We are thus left with the open
question of the asymptotic validation of the noisy ABC estimator—ABC being
envisioned as an inference method per se—when the summary variables are not
sufficient. Obtaining necessary and sufficient conditions on those statistics as
done in Marin et al. (2011) for model choice is therefore paramount, the current
paper obviously containing essential features to achieve this goal.

Overall, and far from mathematical reasons, I remain skeptical about the
“optimality” resulting from this choice of summary statistics as (a) practice—
at least in population genetics—shows that proper approximation to genuine
posterior distributions stems from using a number of summary statistics that
is (much) larger than the dimension of the parameter; (b) the validity of the
approximation to the optimal summary statistics used as the actual summary
statistics ultimately depends on the quality of the pilot run and hence on the
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choice of the summary statistics therein; this approximation is furthermore sus-
ceptible to deteriorate as the size of the pilot summary statistics grows; (c)
important inferencial issues like model choice are not covered by this approach
and recents results of ours (Marin et al., 2011) show that estimating statistics
are likely to bring inconsistent solutions in this context; those results imply fur-
thermore than a näıve duplication of Theorem 3, namely based on the Bayes
factor as a candidate summary statistic, would be most likely to fail.

In conclusion, I find the paper both exciting and bringing both new questions
and new perspectives to the forefront of ABC research.
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