Estimating Mixtures of Regressions

Merrilee HURN, Ana JUSTEL, and Christian P. ROBERT

This article shows how Bayesian inference for switching regression models and their
generalizations can be achieved by the specification of loss functions which overcome the
label switching problem common to all mixture models. We also derive an extension to
models where the number of components in the mixture is unknown, based on the birth-
and-death technique developed in recent literature. The methods are illustrated on various
real datasets.
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1. INTRODUCTION

The switching regression model is well known in the econometrics literature; it arises
when an observed quantity y depends on a vector of covariates x in a linear way

y=1a'B; + oie, €~ g(e), (1.1)
where the (6;,0;)’s (i = 1,...,k) vary among a set of k possible values with probabil-
ities py, . .., pi. In other words, assuming a normal distribution on the perturbation ¢, the

conditional distribution of y given z is a mixture of normal distributions
ylo ~ pN (@' Br, o) + -+ prN (@' B, 1) (1.2)

as illustrated by Figure 1 in a simple regression case.

This model was introduced by Goldfeld and Quandt (1976) and has been mainly studied
from a likelihood point of view. Its appeal is clear when considering datasets such as those
in Figure 2(a), which describes the equivalence ratio, that is, the richness of the air-ethanol
mix in an engine, against the concentration of nitrous oxide in exhaust, as presented in
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Figure 1.  Conditional distributions of y for several values of x, against the regression lines.

Hurvich, Simonoff, and Tsai (1998), and in Figure 2(b), which plots the pairs (GNP,CO2)
for various countries, where GNP denotes the gross national product per capita in 1996 and
CO2 the estimated CO, emission per capita the same year. The left graph clearly indicates
two different nitrous oxide concentration dependencies. The data in the right graph is quite
spread out, with no clear linear trend; however, there do seem to be several groups for
which a linear model would be a reasonable approximation. To identify those groups and
the corresponding linear models is of interest for low GNP countries as it may help to clarify
on which development path they are embarking.

As well as econometrics and chemometrics, there exist many other areas where het-
erogeneous covariate dependent populations are found and studied, both at the classifica-
tion level, namely to identify the homogeneous subpopulations, and at the inference level,
namely to estimate the corresponding models. See for instance Bar-Shalom (1978), Quandt
and Ramsey (1978), or Kiefer (1980). Extensions of (1.1) cover time-dependent models
such as hidden Markov models and nonlinear switching regressions; for example, Hamilton
(1989), Shumway and Stoffer (1991), or Billio, Monfort, and Robert (1999).

The framework is also wider than just simple linear regressions. We can for instance
consider mixtures of logistic regressions:

Ply = 1) = S pr B 13
W=112) =3 P g (13)

i=1

as seen later in an example describing investment choices based on socio-economic covari-
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ates, and mixtures of Poisson regressions,

K
ylz ~ > pi Plexp(z'f;)) ,
i1

as illustrated on two datasets relating numbers of accidents and covariates.

(1.4)

The article is organized as follows: Section 2 describes a Bayesian approach to these
models and uncovers the difficulties which arise in their processing, including the

Figure 2.

representation of the GNP and CO, emission levels in 1996 for various countries (Source: OECD).
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(a) Equivalence ratio against exhaust nitric oxide concentration (Source: Hurvich et al., 1998); (b)
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specificities of MCMC algorithms that must be used in such settings and discussing their
limitations. Section 3 discusses different choices of loss functions depending on different
inferential imperatives and designed to overcome these difficulties. Section 4 presents a
natural extension to unknown numbers of components, based on the birth-and-death process
technology, for the normal regression as well as the two regression models (1.3) and (1.4).
We illustrate those methods on several simulated and real datasets.

2. A BAYESIAN APPROACH

This section briefly reviews some of the aspects of the Bayesian processing of such
models, and describes the inferential difficulties which arise as a result of a lack of identi-
fiability.

2.1 PRIOR SPECIFICATION

The inferential difficulties we describe in Section 2.3 are not particular to a specific prior
modeling, but rather appear as a generic issue. We will thus choose for our simulations and
applications standard conjugate priors, that is, independent normal priors on the regression
coefficients 3;’s, such as V'(0, 10) or (0, 105?), inverse gamma priors on the o2 s for (1.2),
most often an Exp(1) distribution when dealing with a normalized dataset, and a Dirichlet
prior on the weight vector (p1, ..., px), Di(1,...,1). This particular choice allows us to
use a Gibbs sampler but other choices are equally acceptable since they can be implemented
via a Metropolis—Hastings algorithm, as described in the next paragraph.

Notice first that improper priors, hence standard flat priors, are not acceptable in this
setup, because they lead to undefined posterior distributions, whatever the sample size
(see, e.g., Robert 1996), and, second, that exchangeable priors on the components—that
is, priors that are invariant under permutations of the component labels—produce posterior
distributions with identical marginal distributions on all components. This feature is at the
root of the inferential difficulties discussed in Section 2.3.

2.2 MCMC ALGORITHMS FOR SWITCHING REGRESSIONS

2.2.1 Gibbs Sampling

The Gibbs sampler is the most commonly used approach in mixture estimation (Diebolt
and Robert 1994) and consists of augmenting the sample (z1,y1), .. ., (zn, yn) from (1.2)
with artificial allocation variables z;, in order to “de-mix” the observed sample. This allows
for simulation of the parameters of each component conditionally on the allocations, that
is, taking into account only the observations which have been allocated to this component.
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For instance, given a mixture of simple regressions,
k
2
Yi ~ E piN (Boj + Bijzi, 75)
J=1

the conditional full distributions involved in this case are simply normal on both 3y; and
B1; and gamma on ijz.

For logistic regressions (1.3), a second level of augmentation is helpful to simulate
from the full conditionals since, once the observations have been grouped by allocations,
the k densities are of the form

{ﬁ exp(yizif3) }e_mz/zfz
1 L+ exp(z}) ’
which is not directly tractable, but simulation from this distribution can be done via a slice
sampler (see, e.g., Damien, Wakefield, and Walker 1999, or Robert and Casella 1999),
leading to truncated normal proposals. In the case of the Poisson regressions (1.4), the
posterior distribution is also untractable directly, being

t
exp <Z y1x2> 08— Z =B} o= lBl /2 , 2.1)

and a similar slice sampling solution applies.

2.2.2 Random Walk Metropolis—Hastings Algorithms

The intricacy of using the Gibbs sampler plus possibly a slice sampler, while natural,
is not necessary. Indeed, a Metropolis—Hastings algorithm based on a properly calibrated
Cauchy perturbation may be used for all types of regression models considered here (see
Robert and Casella 1999, for details). For an unconstrained parameterization 6 (i.e., after
a log-transform on the variances/scale parameters, and a logit-transform on the weights),
the proposal is # = #() + we,, where ¢, is multivariate Cauchy and w calibrated (via a
burn-in step) to lead to an acceptance rate of about 0.4. For logistic models, the standard
random walk proposal seems to mix faster than the slice sampler (see Altaleb 1999, for
examples) and we observed the same phenomenon for the Poisson regression. In addition,
the programming effort associated with the Metropolis—Hastings solution is much lower
than with the Gibbs sampler: the same program applies for all types of regression, once the
likelihood and prior are properly modified (Cappé and Robert 2000).

2.3 INFERENTIAL DIFFICULTIES

Figure 3(a) presents the Metropolis—Hastings output as a projection of the MCMC
sample in the (3, 31) plane for the regression coefficients of the simple linear regression y =
Boi+xB1; (i = 1,2) and the ethanol dataset of Figure 2(a). The two clusters corresponding
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to the components are clearly identified and lead to a good fit for the regression lines of
the model (as they should, given the clear separation between the components in the data).
Note: The graphs of this article are also available in color at the StatLib archive of JCGS.

Unfortunately this ideal situation is rarely encountered, and the general scenario is
closer to the picture given in Figure 3(b), where the regression coefficients for the three
components associated with the CO, dataset take values in the same area of the (G, 51)
space. Clearly, the three components are then undistinguishable as a whole (i.e., over the
sequence of iterations), even though they can be separated at any given iteration.

This phenomenon is often called label-switching and has been known for a while, since
it follows from the lack of identifiability of mixture models (see, e.g., Celeux, Hurn, and
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Figure 3. (a) Output of the random walk Metropolis—Hastings sampler projected on the (8o, 31) space for the
ethanol dataset; (b) output of the Gibbs sampler projected on the (By, B1) space for the CO, dataset and a three-
component mixture model. (In both graphs, the MCMC output for each component of the mixture is represented
by a different symbol and a different gray level.)
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Robert 2000). In fact, as mentioned in Section 2.1, the posterior distribution is invariant
under permutation of the labels of a mixture model. This means that a given component of a
mixture cannot be individually extracted from the likelihood because the component labels ¢
cannot be distinguished from one another, unless some identifiability constraint is imposed
a priori [see the discussion of Richardson and Green (1997) for different perspectives
on identifying constraints]. When the prior implies exchangeability over the parameters
(Bi,pi) or (Bi, 04,05) (i = 1,..., k), the symmetry of the posterior distribution in 4, that is,
in terms of the labeling of the parameters for a given number & of regression lines, implies
that the corresponding marginal distributions of the ((;, p;)’s are all equal. Consequently
the posterior marginal means [E[3; |z, y] are all equal and do not provide sensible estimators
of the regression lines. Obviously, there are some settings where the different modes in
the posterior distribution are so well separated that the MCMC sampler only visits one
of the modes and label-switching does not occur, as shown in Figure 3(a). In such cases,
where, stricto sensus, the MCMC sampler does not function correctly, the ergodic averages
can provide acceptable answers, as shown by Figure 4(a) for the CO, dataset and a two-
component mixture modeling.

Celeux et al. (2000) considered this problem for normal and exponential mixtures. They
showed that the solution based on identifiability constraints, that is with plug-in estimates
for the mixture parameters based on ordered MCMC samples, as in Richardson and Green
(1997), does not always provide sensible solutions. This is also true for regression, even
when the MCMC samples are well separated against the components. While Figure 4(a)
gives the same answers for the unordered and ordered MCMC samplers, Figure 4(b), which
corresponds to a simulated dataset of 185 observations from a four-component mixture,
given on the upper left hand corner of the graph, shows that the two graphs corresponding
to the orderings on 3y and on 3, differ from the standard averages, which are closer to the
true regression lines. (See Figure 6(a) for a plot of the corresponding MCMC samples.)

2.4 INFORMATION CARRIED BY THE MCMC OuTtPUT

The above statement of the problem does not imply that inference cannot be made in
this case, since the MCMC output contains sufficient information on the regression lines
and the parameters of the model. This is illustrated by Figure 5, which gives a sampling
representation of the posterior distribution of the regression lines y = Bo; + 61, (i =
1,..., k) for the two datasets of Section 1. This approximation is obtained the following
way: at each iteration ¢ of the MCMC sampler, five x’s are selected at random in the range
[€mins Tmax] and the points

(.8 +28)

are represented on the graph, where the component ¢ is chosen with probability pl(-t). A
different color is associated with each component 7 and Figure 5(b) shows a strong mixing
over colors, which means again that MCMC approximations to the posterior expectations
E[8;|z, y] will perform poorly. However, it also exhibits an equally strong stability in the
location of the points, which means that the two main regression lines can be located almost
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Figure 4. (a) Estimated regression lines for the CO, dataset with a two-component mixture model, based on a
random walk Metropolis—Hastings algorithm: the upper graph is based on averages component by component,
the middle graph on averages after reordering in By and the bottom graph on averages after reordering in (3y;
(b) same graph for a simulated dataset of 185 observations and a four-component mixture given on the upper left
corner, for a random walk Metropolis—Hastings algorithm.
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by sight and therefore that inference is still meaningful in this setting. In this regard there is
little difference between the upper and lower graphs in Figure 5, even though the MCMC
parameter samples are as dissimilar as possible (one being extremely mixed and the other
not mixing at all over the labels).

Figure 5. (a) Sampling representation of the posterior distribution on the regression lines y = (3p; + xB1; (i =
1,2) for the ethanol dataset and a two-component mixture model, obtained by selecting points at random on these
lines along iterations; (b) same graph for the CO, dataset and a three-component mixture model. (In each graph,
the dark blue points represent the observations.)
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One can notice that a natural byproduct of this sampling graphical device is to provide
an evaluation of the variation of the regression lines and, hence, a Monte Carlo confidence
band by selecting the 95% of points closest to the lines.

The inferential difficulty thus lies in formalizing the derivation of representative re-
gressions lines from figures such as Figure 5(b). The main goal of this article is therefore
to present solutions to this problem that are based on appropriate loss functions.

3. LOSS-BASED INFERENCE

Given the overall unreliability of the ad hoc average and of ordered estimates, we
concentrate on the specification of loss functions L(¢, ¢ ) for the various inferential questions
which arise in this setting. Following Celeux et al. (2000), these loss functions will not rely
on the labeling of the components and so will not be affected by the lack of identifiability.
Therefore, the corresponding Bayes estimator

£ = arg min Ee,. , L(£,€) 3.1)

is equally unaffected by label indexes. [See Stephens (2000b) for a cluster-like approach in
the mixture setting.]

For many choices of L, it is not be possible to find f * explicitly. However, for a large
class of losses, it is computationally feasible to use the two-step approach of Rue (1995):
The first step is to use MCMC ergodic averages to approximate IE¢|, ,, L (&, é ) for a given
&. The second step is to perform the optimization of the estimated expected losses over &.
In order for this approach to be computationally viable, a practical restriction on the loss
function L(&, €) is that it is possible to separate the ¢ and € terms in L(&, €) in the sense
that all evaluations of the estimated ]Eﬂm,yL(g , é ) with respect to different values of é can
be performed using a single common MCMC sample from the posterior of £|z. We will
restrict ourselves to loss functions for which this requirement holds, and explain how the
estimate is obtained in each of the three estimation problems we consider.

3.1 ESTIMATING THE MIXTURE OF REGRESSION LINES

A natural choice for L(¢, f ) is to use a loss function that considers the difference
between two density functions, one using the parameters £ and the other the parameters
f . The set of k regression lines defines a normal mixture density at any particular = value
(as illustrated in Figure 1). Given that we do not make assumptions on the distribution of
the regressors z, a natural solution advocated in Dupuis and Robert (2001) is to sum the
distances between the conditional distributions, d( f(-|z, ), f(-|x, €)), over the observed
values. For the density difference itself, the symmetrized Kullback-Leibler distance can be
used

fe(y)
fe(y)

L(&,€) = Z/R [fﬁ(y) tog 260 | fe(y)log

dy, 32
fe(y) Y G-
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where f¢ denotes the (conditional) density of the k-component regression mixture (the
regressor variables x are omitted for ease of notation). Notice that this loss function does
not involve the allocation variables which appear only in the completed density used by
the Gibbs sampler. In the case of the qualitative regression models (1.3) and (1.4), the
Kullback—Leibler distance (3.2) is modified as

fe(y)
ZZ y) log ‘z; + fe(y) log% : (3.3)

to account for the discrete nature of the observations .

The choice of the Kullback—Leibler distance is defended for several reasons in Bernardo
and Smith (1994), reasons ranging from information theory to asymptotics, including the
fact that this loss function is invariant under reparameterization, unlike the L, distance for
instance. An additional incentive for chosing this distance is that it is invariant under rela-
beling. Moreover, it lends itself to the two-step “estimation-then-maximization” approach
in that we can decompose the posterior expected loss as follows:

fe(w)
E¢[s., [Z/ ( EZ; + fe(y)lo fi(;) dy]
= Z/R E¢|sy [fe(y)log fe(y)] — log feW)Eejay [fe(y)]

o) 10g fe(y) — o (W) Eqle.y [l0g fe()] ) dy, (3.4)

assuming that the order of integration may be interchanged. Considering the four terms on
the right hand side of this equation individually, the first can be seen to be irrelevant for our
purposes since it does not depend on é . The second and fourth terms both involve posterior
expectation, and we propose using the Markov chain Monte Carlo step to estimate these
values on a series of y-grids (one for each of the x;’s in the summation). We can then use
numerical integration for the second, third, and fourth terms on these same grids of y’s to
evaluate the estimated expected posterior loss (less a constant independent of é) for any
value of f , that is, each evaluation requires n numerical integrations. The optimization step
cannot be performed explicitly, and we have to resort to simulated annealing as in Celeux et
al. (2000). The computational burden grows with the number of distinct observed = values
but is feasible for all of our examples.

As a first illustration, Figure 6 depicts the MCMC sample corresponding to the sim-
ulated dataset of Figure 4(b), plus the comparison between the estimated and the true
regression lines. As can be seen on Figure 6(b), the fit is particularly good, but Figure 6(a)
shows that the MCMC clusters hardly overlap.

Moving on to the CO, dataset introduced in the Introduction, Figure 7(a) compares
the estimators obtained when fitting a two-component and a three-component model to the
data. The two-component model is more satisfactory, in the sense that it corresponds to
the posterior spread of the regression lines in Figure 7(b), obtained by the sampling device
explained in Section 1, while the estimated weight of the component with the negative slope
is 0.007.
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3.2 ESTIMATING CLUSTERS

There are applications where the primary information of interest is not the regression
lines, but clusters, that is, the groupings of allocations of observations. Here again we need
a loss function for which the arbitrariness of the component labels is immaterial. Recalling
that the notation z; = [ denotes that observation i is allocated to line I, we suggest using
a function which compares configurations z and 2 by noting whether pairs of observations
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Figure 6. (a) Random walk MCMC sample associated with a simulated dataset of 185 observations in the (Sy, 1)
space for a four-component mixture model; (b) corresponding estimates of the regression lines obtained by the
loss function (b) along with the true lines (left) (the dataset is represented on each plot).
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1 and j are allocated to the same component under one set of allocations but to different
components under the other set:

L(z,2) = Z {H[zizzj](l - ]I[ﬁz‘:fj]) + ]I[fm:ﬁj](l - ]I[Zz:zj})} : (3.5

i<j

Since the posterior expectation of Il —. 1 is the posterior probability of this event,

20
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Figure 7. Comparisons of the loss estimates for two- and three-component mixtures for the CO, dataset and a
random walk MCMC sample (left and right, respectively); (b) repartition of the derived sample of the regression
lines for the two-component mixture model.
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E.joyL(2,2) =Y {Puoy(zi =2)(1 = Upgis)) + Ug, s Pajoy (2 # 2)} . (3.6)
i<j

The z;’s are automatically generated as part of the Gibbs sampler steps, but it is straight-

forward to add an extra data augmentation step to the other samplers, without jeopardizing

the stability properties of both the MCMC and the z; chains. Notice moreover that this data

augmentation step is fairly generic and hence costless, as opposed to the Gibbs parameter
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Figure 8. (a) Dataset and estimated regression lines for the dataset of Fan and Chen (1999) for a two-component
model via the loss function of Section 3.1; (b) representation of the allocations of the observations to components
1 (dark) and 2 (gray) via the loss function of Section 3.2.
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step, which always involves specific programming. (All the C programs used in this article
are available upon request from the authors.)

Consider, as an illustration of both loss functions presented so far, a dataset from
Fan and Chen (1999), which relates daily measurements of the nitrogen pollutant NO; in
Hong Kong in 19941995 and the number of daily hospital admissions for circulation and
respiration problems. For two components, the MCMC clusters are clearly separated and
the posterior distribution of the regression lines gives two distinct bands. The loss analysis
of the MCMC sample is in agreement with this empirical analysis: the estimated lines in
Figure 8(a) correspond to these two bands, while the dataset is neatly separated into two
groups, as shown in Figure 8(b), with a division which is close to the average of the two
regression lines. Notice that the estimated weights of the two components are 0.553 and
0.447, respectively. (The fact that one regression line is almost flat is quite interesting in that
it suggests there are days when the NO, level does not directly affect hospital admissions.)

3.3 ESTIMATING THE LINES PLUS ALLOCATED OBSERVATIONS

A more likely scenario is that the question of interest is actually to identify the lines to
which groups of observations belong. By this we mean that we wish to state which subsets
of the observations are associated with a regression line with parameters 3, o%. Notice that
in this scenario, there is a redundancy in estimating both the allocations for each observation
and the weights associated with each line. We therefore consider only the allocations and
the parameters of the different regressions. The parameter of interest is thus 7 defined to be
the set of k {3,02}’s, together with (z1, ... 2,).

We again propose a form of Kullback—Leibler distance as a loss function, but now
considering the allocation of observation (z;, y;), say z; = [, the density in question at x; is
the regression with parameters {/3;, 07 }; rather than the mixture regression. The difference
between these densities is illustrated by comparing Figures 1 and 9, the former showing the
full regression mixture at each z;, the latter the normal densities corresponding to the z;-th
regression at each labeled x;. The loss function is therefore

fa(y)

L(n, ) = ;/R {fn(y) log ()

where f,, now denotes the density of the regression line corresponding to the allocation of the

dy, (3.7

fn(y) A o
) + fa(y) log

corresponding x. In the vocabulary of the EM algorithm, we thus work with the completed
likelihood rather than with the observed likelihood. We employ the same Markov chain
Monte Carlo ideas as in Section 3.1 to estimate expected posterior values on a grid, and
numerical integration and simulation for the optimization step.

4. UNKNOWN NUMBERS OF COMPONENTS

When the degree of heterogeneity in the data is unknown, as is the case for the CO,
dataset of Section 1, it is unreasonable to postulate a fixed number & of components in the
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Observation

Figure 9.  The three-component labeled regression mixture conditional distributions of y|x, z.

mixtures (1.2), (1.3), and (1.4), and k£ must be estimated as well. From a Bayesian point
of view, this implies using a prior distribution on k: for illustration purposes as well as
simplicity’s sake, we choose a Poisson P () distribution for this prior with A\; = 2 in most
of the following examples. While this complex estimation problem has been addressed for
standard mixtures through reversible jump techniques (Richardson and Green 1997), we
opt for the recent alternative proposed by Stephens (2000a) and based on birth-and-death
processes. Both approaches are equally valid on theoretical grounds (since they both satisfy
the required detailed balance conditions) and our choice is based solely on practical consid-
erations; the birth-and-death process avoids the specification of well-calibrated moves, such
as the splits-and-merges of Richardson and Green (1997) and the corresponding computa-
tion of the Jacobians of the one-to-one transforms, plus it allows for easier changes of both
prior distributions and parameterization. Another relevant point is that the implementation
of the birth-and-death procedure is completely independent of the MCMC algorithm cho-
sen for the fixed k steps. In fact, it works even without a supplementary MCMC algorithm.
This property allows very modular programming when implementing the method and thus
improves portability. [Notice, however, that the reversible jump algorithm, when restricted
to birth and death moves with birth proposals based on the prior distribution, enjoys similar
properties. See Cappé, Robert, and Rydén (in press), for further connections between the
approaches.]

4.1 BIRTH-AND-DEATH PROCESSES

We will not go into details about the birth-and-death procedure since this is a straight-
forward adaptation of Stephens’ (2000a) algorithm. Figure 10 gives a description of the
method in an program-like manner. The method depends on a single parameter Ay, which
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Forv=0,1,...,V

t—wv

Run tillt>ov+1

1. Compute 5j(ﬂ) — Lg/(gﬁ) %
k
2. 6(8) « Z‘Sj(ﬁj)r e X +8(8), u~Uu(0,1])
j=1

3. t«—t—ulog(u)
4. With probability §(8)/u

Remove component j with probability §;(8)/6(B)
k—k—1
pe—pe/(1 =p;) (L)

Otherwise,

Add component j from the prior =(f)
pj ~ Be(v, k)

pe — pe(l —pj) (€F])

k—k+1

5. Run I MCMC(k,(3,p)

Figure 10. Algorithmic representation of the birth-and-death process. The parameter Ay is the mean of the Poisson
prior on k and ~y is the parameter of the Dirichlet prior on p. The MCMC(k, 3, p) function is a generic MCMC
algorithm for a fixed k.

is the birth rate in the point process. We found in practice that better mixing was associated
with higher values of )\, as should be expected, but this is at the expense of running more
simulations between two monitoring (integer) instants. The influence of the number of it-
erations I where an MCMC sampler is run for the current value of k (Step 5) is small and
we chose I = 10 in our experiments.

The algorithms perform quite satisfactorily in our case and produces output where label
switching is naturally very high (since the meaning of component 1, say, is vacuous, given
that the number of components varies from one iteration to one another). The inferential
issues addressed in Section 3 are thus reproduced in the current setup and we study the
implementation of the above loss functions in the case of varying k.

Notice first that, from an inferential point of view, there is little difference from the
fixed k setting. Indeed, the inference must be conditional on &, as argued by Robert (1997),
because a general principle in Bayesian model choice is that parameters appearing in differ-
ent models must be considered as separate entities. Therefore, the analysis for each value
of k is as in the fixed k case. Obviously, running the analysis for varying k also leads to
inference about the value of k supported by the data, both through the posterior probabilities
and through the predictive plots of the regression lines, approximated as in the fixed & case.
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For instance, the most probable value of k for the simulated dataset of 185 observations is
k=4.

4.2 NORMAL REGRESSION

We reanalyzed the CO, dataset, with the conclusion shown in Figure 11 that k = 2
is the solution most favored by the data (using a Poisson prior on k£ with mean 2). It is
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Figure 11. (a) Rawplot of the successive values of k along 10,000 consecutive iterations of the birth-and-death
algorithm and corresponding histogram for the CO, dataset; (b) representation of the posterior distributions of
the regression lines for the four most likely values of k.
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Figure 12. Plot of the successive values of k along 5,000 consecutive iterations of the birth-and-death algorithm
for the INSEE dataset, with in superposition the corresponding value of the log-likelihood.

interesting to see that the birth-and-death process creates enough mixing to ensure that &k
moves at a good rate. Notice that, in the case k = 3, there is a stable third line appearing,
which is consistent with the findings of Figure 7 when k is fixed. However, the weight
associated with the third regression line is estimated by 0.0069 using the loss of Section
3 and is thus negligible. (From Figure 11(a), it would seem that £ = 5 is more likely that
k = 1, but this is an artifact, due to the fact that the chain does not change for a large number
of iterations in the few cases k = 1.)

4.3 LoGISTIC REGRESSION

A mixture of logistic regression models (1.3) is appropriate for the analysis of a dataset
from the INSEE (Institut National de la Statistique et des Etudes Economiques) 1992 sur-
vey on financial assets. This dataset of 1,278 individuals relates the possession of certain
financial assets (SICAV) to some socioeconomic covariates, from which we selected the
inactivity dummy variable (1 if inactive, O if active), the age group (from 1 to 6), the yearly
income, and the overall wealth (both variables have been standardized). The prior on the
Bi;’s is a normal (0, 100) distribution.

The trace of the output of the Gibbs sampler (not represented here) shows that the label-
switching phenomenon occurs quite intensely. When k varies, the mixing over k£ induced
by the birth-and-death algorithm is quite high, as shown by Figure 12, which also contains
the sequence of the log-likelihoods at the successive values of the parameters. The shapes
of the posterior distributions of the 3;;’s, when averaging over k, are very similar to those
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Table 1. Loss Estimates of the Logistic Coefficients for the INSEE Dataset Produced by the Proce-
dure of Section 3.1 for the Most Probable Values of k (the numbers of occurences of the
corresponding K’s are indicated in parentheses, out of a total number of 5,000 simulations)

k pi Boi Bii Bai Bsi

2 0.750707 4.947922 12.030713 —-7.071619 4.142905
(1204)  0.249293 15.330934 —17.102980 4.523014 —1.444494
3 0.713159 6.714042 13.041261 —5.963821 3.590483
(1294) 0.214304 —-5.907764 —15.258550 —1.879069 2.081183

0.072536 1.926905 0.032500 1.811353 0.305916
4 0.510735 5.131563 13.833825 —2.484054 8.002322
(1064) 0.256141 10.304051 3.565791 2.601400 7.830500

0.195479 —22.490153 —7.773485 —4.394919 —16.251573

0.037574 0.768561 —24.482456  —8.485442 —1.261904

obtained for k£ = 4. Notice also how the log-likelihood follows more accurately the shape
of the k curve in the last part of the iterations, which may indicate a better fit for all values
of k due to a stabilization of the process. Table 1 provides the estimates of the logistic
coefficient obtained via the loss function of Section 3.1. It shows a persistence of the first
component for the three values of k, with a negative effect of the yearly income which can
be explained as a tendency for people with higher incomes to choose more risky but more
profitable financial assets. A similar analysis can be made for the second component when
k = 3 and the third group when k = 4: younger active people with higher incomes are less
likely to own the SICAV assets. Notice also that the last component for k£ = 4 has a fairly
low probability.

4.4 PoISSON REGRESSION

When considering the Poisson regression mixture (1.4), the setting is very similar to the
previous paragraph. We first check the performances of the birth-and-death algorithm on a
dataset analyzed by Lenk (1999), which relates the monthly unemployment rate with the
monthly number of accidents (in thousands) in Michigan, from 1978 to 1987. The model
is thus

Nlo~ > piP(exp{fo; + fii log(0)}),

where N denotes the number of accidents and p the corresponding unemployment rate.
Since Lenk (1999) noted a possible seasonal effect on the dependence, we postulated a
P (4) prior on the number of components.

The result of this study is that the series of the k(*)’s produced by the birth-and-death
algorithm is mostly composed of 1’s, with a frequency approximately of 0.91, and of 2’s,
with a frequency approximately of 0.09. Examination of the log-likelihood also shows that
the Markov chain does not remain in the neighborhood of a local maximum but explores (to a
certain extent) the posterior surface. When k = 1, the standard posterior mean is acceptable
as estimate and the “plug-in” estimate of the regression function provides a reasonable fit
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Figure 13. Regression curve with plug-in loss estimate for the Poisson modeling of the Michigan accident dataset.

of the dataset which cannot be distinguished from the loss estimate derived from Section
3.1 in Figure 13. For k = 2, the loss estimate produces a second component with a very
small weight, 0.001399, which can be ignored.

We now turn to a second accident dataset, provided by INRETS (Institut National de
Recherche sur les Transports et leur Sécurité), which relates the number of accidents at 107
selected crossroads with the average traffic on both the primary (¢,,) and the secondary (¢)
roads connecting through these crossroads (Brenac 1994). The expectation of the Poisson
distribution is then

exp{fo + 31 log(ts) + B log(t,)} . (4.1)

As in Viallefont, Richardson, and Green (2002), whose analysis uses reversible jump tech-
niques, the most probable value of % is 3, although k£ = 4 comes a close second. However,
the MCMC sample conditional on k = 4 accumulates values near 0 and this case does
not lead to higher values of the likelihood. Moreover, for the three-component case, the
third component corresponds to the high-risk crossroads, with an increasing risk factor (or
elasticity) ) due to the secondary road and a decreasing elasticity for the primary road,
while, for the four-component case, the elasticities are too high to be realistic from a traffic
safety point of view.

Figure 14(a) gives a contour plot of the posterior expectations of the mixtures of the
averages (4.1), which do not depend on the labeling and is obtained by averaging over the
MCMC iterations, producing the expected increase of the number of accidents in both ¢,
and t5, while Figure 14(b) inserts a barplot average predictive distribution on the number of
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accidents for each observed couple (¢, t,) with, logicaly, a wider spread for larger values
of ¢, and t,. This figure convincingly illustrates the potential of the MCMC sample in

M. HurN, A. JUSTEL, AND C. ROBERT

providing various interpretations of the estimated model.

As detailed in the technical report associated with this article, it is also possible to use
the MCMC output to represent the loss estimates given in Table 2 through contour lines
derived from the plug-in expectations (4.1) and color allocations of the 107 observations,

for different values of k.
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Figure 14. (a) Contour plot of the posterior expectations exp(By + B1log(ts) + B2log(tp)) for the INRETS
accident dataset; (b) corresponding barplot of the average predictive distribution for each observed crossroad
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Table 2. Estimated parameters of model (4.1) under the loss function (3.7), for the two most probable
values of kand the INRETS accident dataset (the numbers of occurences of the corresponding
K's are indicated in parentheses, out of a total number of 5,000 simulations)

Number of
components Bo B¢ B2
3 0.271051  0.248952 1.178467
(2530) 1.619090 0.223184 0.405672
3.025534 0.430442 —0.154674
4 —0.283464 0.452226 1.809185
(1856) 1.019317  0.405510 0.617267

1.425445 0.269155 2.783191
1.550998 2.567553 —2.578583

5. CONCLUSION

Although decision theory is often criticized on a practical basis, on the ground that
actual decision makers cannot build realistic loss functions, we have demonstrated in this
article that formal loss functions based on the Kullback-Leibler functional distance can
produce valuable answers in the nonidentifiable setting of mixtures of regressions, where
standard empirical measures such as the posterior mean do not work. While the simulation
steps used here to produce a sample from the posterior distribution are standard (even though
we are not aware of previous uses of Metropolis—Hastings procedures in such settings), the
computational part invoked by the minimization of the posterior loss is more intense, but
feasible.

We have also shown that inference can be drawn about the number of components in the
mixture, coupling the simple procedure of Stephens (2000a) with the MCMC algorithms
developed here, and that, besides, the loss derivation of estimates also applies in this variable
dimension setting by conditioning on k. Examples demonstrated that the mixing behavior
of the samplers was satisfactory, even for several regressors. These various tools, as well
as the graphical representations introduced in this article, can be used for a wide variety
of regression problems and of prior distributions, and this at a minimal programming cost.
This study indicated in addition that the prior distribution on % is not without effect on the
resulting inference: a Poisson P(1) prior does provide a posterior distribution on k that
differs widely from the posterior associated with a Poisson P(10) prior. This feature is to
be expected, given the ill-posed nature of the mixture models. It has, however, a limited
influence on the predictive distribution, in the sense that curves such as those in Figure 14
do not vary between priors.
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