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Monte Carlo

About
Monte Carlo is an official administrative
area of Monaco, specifically the ward of
Monte Carlo/Spélugues, where the
Monte Carlo Casino is located.

[Wikipedia]



Monte Carlo

About
Monte Carlo methods, or Monte Carlo
experiments, are a broad class of
computational algorithms that rely on
repeated random sampling to obtain
numerical results. The underlying
concept is to use randomness to solve
problems that might be deterministic in
principle.

[Wikipedia]
[Stanislas Ulam]
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About
Monte Carlo methods, or Monte Carlo
experiments, are a broad class of
computational algorithms that rely on
repeated random sampling to obtain
numerical results. The underlying
concept is to use randomness to solve
problems that might be deterministic in
principle. The name comes from the
Monte Carlo Casino in Monaco, where
the primary developer of the method,
physicist Stanislaw Ulam, was inspired
by his uncle’s gambling habits.

[Wikipedia]

[Cimetière du Montparnasse]



Illustrations

Necessity to “(re)produce chance” on a computer
▶ Evaluation of the behaviour of a complex system (network,

computer program, queue, particle system, atmosphere,
epidemics, economic actions, &tc)

[© Office of Oceanic and Atmospheric Research]



Illustrations

Necessity to “(re)produce chance” on a computer
▶ Production of changing landscapes, characters, behaviours in

computer games and flight simulators

[© guides.ign.com]



Illustrations

Necessity to “(re)produce chance” on a computer
▶ Determine probabilistic properties of a new statistical

procedure or under an unknown distribution [bootstrap]

(left) Estimation of the cdf F from a normal sample of 100 points;

(right) variation of this estimation over 200 normal samples



Illustrations

Necessity to “(re)produce chance” on a computer
▶ Validation of a probabilistic model

Histogram of 103 variates from a distribution and fit by this distribution density



Illustrations

Necessity to “(re)produce chance” on a computer
▶ Approximation of a integral

[© my daughter’s math book]



Illustrations

Necessity to “(re)produce chance” on a computer
▶ Maximisation of a weakly regular function/likelihood

[© Dan Rice Sudoku blog]



Illustrations

Necessity to “(re)produce chance” on a computer
▶ Pricing of a complex financial product (exotic options)

Simulation of a Garch(1,1) process and of its volatility (103 time units)



Illustrations

Necessity to “(re)produce chance” on a computer
▶ Training neural networks with simulated data, as e.g. in deep

leaning



Illustrations

Necessity to “(re)produce chance” on a computer
▶ Replacing true data with synthetic data, to combine privacy

protection and learning

[©Clearbox AI]



Illustrations

Necessity to “(re)produce chance” on a computer
▶ Handling complex statistical problems by approximate

Bayesian computation (ABC)

core principle

Simulate a parameter value (at random) and pseudo-data
from the likelihood until the pseudo-data is “close enough” to
the observed data, then
keep the corresponding parameter value

[Tavaré & al., 1999; Beaumont, Sisson & Tan, 2019]



Illustrations

Necessity to “(re)produce chance” on a computer
▶ Handling complex statistical problems by approximate

Bayesian computation (ABC)

demo-genetic inference

Genetic model of evolution from a
common ancestor (MRCA)
characterized by a set of parameters
that cover historical, demographic, and
genetic factors
Dataset of polymorphism (DNA sample)
observed at the present time
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Différents scénarios possibles, choix de scenario par ABC 

Le scenario 1a est largement soutenu par rapport aux 

autres ! plaide pour une origine commune des 

populations pygmées d’Afrique de l’Ouest 
Verdu et al. 2009 



Illustrations

Necessity to “(re)produce chance” on a computer
▶ Handling complex statistical problems by approximate

Bayesian computation (ABC)

Pygmies population demo-genetics

Pygmies populations: do they
have a common origin? when
and how did they split from
non-pygmies populations? were
there more recent interactions
between pygmies and
non-pygmies populations?
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Interlude # 1: A pedestrian example

paired and orphan socks
A drawer contains an unknown number of socks, some of which
can be paired and some of which are orphans (single). One takes
at random 11 socks without replacement from this drawer: no pair
can be found among those. What can we infer about the total
number of socks in the drawer?

▶ sounds like an impossible task
▶ one observation x = 11 and two unknowns, nsocks and npairs
▶ writing the likelihood is a challenge [exercise]
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A priori on socks

Given parameters nsocks and npairs, set of socks

S =
{
s1, s1, . . . , snpairs , snpairs , snpairs+1, . . . , snsocks

}
and 11 socks picked at random from S give X unique socks.

Rassmus’ reasoning
If you are a family of 3-4 persons then a guesstimate would be that
you have something like 15 pairs of socks in store. It is also
possible that you have much more than 30 socks. So as a prior for
nsocks I’m going to use a negative binomial with mean 30 and
standard deviation 15.
On npairs/2nsocks I’m going to put a Beta prior distribution that puts
most of the probability over the range 0.75 to 1.0,

[Rassmus Bå̊ath’s Research Blog, Oct 20th, 2014]
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Simulating the experiment

Given a prior distribution on nsocks and npairs,

nsocks ∼ Neg(30, 15) npairs|nsocks ∼ nsocks/2Be(15, 2)

possible to

1. generate new values
of nsocks and npairs,

2. generate a new
observation of X,
number of unique
socks out of 11.

3. accept the pair
(nsocks, npairs) if the
realisation of X is
equal to 11
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The outcome of this simulation method returns a distribution on
the pair (nsocks, npairs) that is the conditional distribution of the
pair given the observation X = 11
Proof: Generations from π(nsocks, npairs) are accepted with probability

P {X = 11|(nsocks, npairs)}
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The outcome of this simulation method returns a distribution on
the pair (nsocks, npairs) that is the conditional distribution of the
pair given the observation X = 11
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The Bayesian Perspective

In the Bayesian paradigm, the information brought by the data x,
realization of

X ∼ f(x|θ),

is combined with prior information specified by prior distribution
with density

π(θ)
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Posterior distribution

Information summary contained in a probability distribution,
π(θ|x), called the posterior distribution
Derived from the joint distribution f(x|θ)π(θ), according to

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

,

[Bayes Theorem]
where

Z(x) =

∫
f(x|θ)π(θ)dθ

is the marginal density of X also called the (Bayesian) evidence
[Gelman & al., 2020]



Posterior distribution

Information summary contained in a probability distribution,
π(θ|x), called the posterior distribution
Derived from the joint distribution f(x|θ)π(θ), according to

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

,

[Bayes Theorem]
where

Z(x) =

∫
f(x|θ)π(θ)dθ

is the marginal density of X also called the (Bayesian) evidence
[Gelman & al., 2020]



Posterior distribution

Information summary contained in a probability distribution,
π(θ|x), called the posterior distribution
Derived from the joint distribution f(x|θ)π(θ), according to

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

,

[Bayes Theorem]
where

Z(x) =

∫
f(x|θ)π(θ)dθ

is the marginal density of X also called the (Bayesian) evidence
[Gelman & al., 2020]



A typology of Bayes computational problems
(i). missing variable models

f(xobs|θ) =

∫
f⋆(xobs, x⋆|θ) dx⋆

(ii). use of complex parameter spaces, as for instance in
constrained parameter sets like those resulting from imposing
stationarity constraints in dynamic models;

(iii). use of a complex sampling model with an intractable
likelihood, as for instance in some graphical models;

(iv). use of a huge dataset;
(v). use of a complex prior distribution (which may be the

posterior distribution associated with an earlier sample);
(vi). use of a complex inferential procedure as for instance, Bayes

factors
Bπ
01(x) =

P(θ ∈ Θ0 | x)

P(θ ∈ Θ1 | x)

/
π(θ ∈ Θ0)

π(θ ∈ Θ1)
.

[Robert, 2001]
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Random variable generation

• Rely on the possibility of producing (computer-wise) an
endless flow of random variables (usually iid) from well-known
distributions

• Given a uniform random number generator, illustration of
methods that produce random variables from both standard
and nonstandard distributions
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Pseudo-random generator

Pivotal element/building block of simulation: always requires
availability of uniform U (0, 1) random variables

[© MMP World]



Pseudo-random generator

Pivotal element/building block of simulation: always requires
availability of uniform U (0, 1) random variables
0.1333139
0.3026299
0.4342966
0.2395357
0.3223723
0.8531162
0.3921457
0.7625259
0.1701947
0.2816627
...

[R runif(10)]



Pseudo-random generator

Pivotal element/building block of simulation: always requires
availability of uniform U (0, 1) random variables

Definition (Pseudo-random generator)
A pseudo-random generator is a deterministic function f from ]0, 1[
to ]0, 1[ such that, for any starting value u0 and any n, the
sequence

{u0, f(u0), f(f(u0)), . . . , f
n(u0)}

behaves (statistically) like an iid U (0, 1) sequence



Pseudo-random generator

Pivotal element/building block of simulation: always requires
availability of uniform U (0, 1) random variables
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Philosophical foray

¡Paradox!
While avoiding randomness, the deterministic sequence

(u0, u1 = f(u0), . . . , un = f(un−1))

must resemble a random sequence!
Debate on whether or not true
randomness does exist (Laplace’s
demon versus Schroedinger’s
cat), in which case pseudo
random generators are not
random (von Neuman’s state of
sin)
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True random generators

Intel circuit producing “truly random” numbers:
There is no reason physical generators should be
“more” random than congruential (deterministic)
pseudo-random generators, as those are valid
generators, i.e. their distribution is exactly known
(e.g., uniform) and, in the case of parallel
generations, completely independent



True random generators

Intel generator satisfies all benchmarks of
“randomness” maintained by NIST:
Skepticism about physical devices, when compared
with mathematical functions, because of (a)
non-reproducibility and (b) instability of the device,
which means that proven uniformity at time t does
not induce uniformity at time t+ 1



Desiderata and limitations

• Production of a deterministic sequence of values in [0, 1] which
imitates a sequence of iid uniform random variables U[0,1].

• Can’t use the physical imitation of a “random draw” [no
guarantee of uniformity, no reproducibility]

• Random sequence in the sense: Having generated
(X1, · · · , Xn), knowledge of Xn [or of (X1, · · · , Xn)] imparts
no discernible knowledge of the value of Xn+1.

• Deterministic: Given the initial value X0, sample (X1, · · · , Xn)
always the same

• Validity of a random number generator based on a single
sample X1, · · · , Xn when n tends to +∞, not on replications

(X11, · · · , X1n), (X21, · · · , X2n), . . . (Xk1, · · · , Xkn)

where n fixed and k tends to infinity.
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Uniform pseudo-random generator

Algorithm starting from an initial value 0 ≤ u0 ≤ 1 and a
transformation D, which produces a sequence

(ui) = (Di(u0))

in [0, 1].
For all n,

(u1, · · · , un)

reproduces the behavior of an iid U[0,1] sample (V1, · · · , Vn) when
compared through usual statistical tests (e.g., Kolmogorov)
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Uniform pseudo-random generator (2)

• Validity means the sequence U1, · · · , Un leads to accept the
hypothesis

H : U1, · · · , Un are iid U[0,1].

• The set of tests used is generally of some consequence
◦ Kolmogorov–Smirnov and other nonparametric tests
◦ Time series methods, for correlation between Ui and
(Ui−1, · · · , Ui−k)

◦ Marsaglia’s battery of tests called Die Hard (!)
[Diehard, Marsaglia, 1995, 2006]
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Usual generators

In R and S-plus, procedure runif()

The Uniform Distribution

Description:
‘runif’ generates random deviates.

Example:
u <- runif(20)

‘.Random.seed’ is an integer vector, containing
the random number generator state for random
number generation in R. It can be saved and
restored, but should not be altered by users.
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Usual generators (2)

In C, procedure rand() or random()

SYNOPSIS
#include <stdlib.h>
long int random(void);

DESCRIPTION
The random() function uses a non-linear additive
feedback random number generator employing a
default table of size 31 long integers to return
successive pseudo-random numbers in the range
from 0 to RAND_MAX. The period of this random
generator is very large, approximately
16*((2**31)-1).
RETURN VALUE
random() returns a value between 0 and RAND_MAX.



Usual generators (3)

In Matlab and Octave, procedure rand()

RAND Uniformly distributed pseudorandom numbers.
R = RAND(M,N) returns an M-by-N matrix containing
pseudorandom values drawn from the standard uniform
distribution on the open interval(0,1).

The sequence of numbers produced by RAND is
determined by the internal state of the uniform
pseudorandom number generator that underlies RAND,
RANDI, and RANDN.



Usual generators (4)

In python, procedure random.uniform()

random.uniform(a, b)

Return a random floating-point number N
such that a <= N <= b for a <= b and
b <= N <= a for b < a.

The end-point value b may or may not be
included in the range depending on
floating-point rounding in the expression
a + (b-a) * random().



The R generator options

Options for R runif()

Details
The currently available RNG kinds are given below. kind is partially matched to this list. The default is "Mersenne-Twister".

"Wichmann-Hill"
The seed, .Random.seed[-1] == r[1:3] is an integer vector of length 3, where each r[i] is in 1:(p[i] - 1), where p is the length 3 vector of primes, p = (30269, 30307, 30323). The Wichmann{Hill generator has a cycle length of 6.9536 × 10ˆ12 (= prod(p-1)/4, see Applied Statistics (1984) 33, 123 which corrects the original article). It exhibits 12 clear failures in the TestU01 Crush suite and 22 in the BigCrush suite (L’Ecuyer, 2007).

"Marsaglia-Multicarry":
A multiply-with-carry RNG is used, as recommended by George Marsaglia in his post to the mailing list ‘sci.stat.math’. It has a period of more than 2ˆ60.

It exhibits 40 clear failures in L’Ecuyer’s TestU01 Crush suite. Combined with Ahrens-Dieter or Kinderman-Ramage it exhibits deviations from normality even for univariate distribution generation. See PR#18168 for a discussion.

The seed is two integers (all values allowed).



The R generator options
Options for R runif()
"Super-Duper":
Marsaglia’s famous Super-Duper from the 70’s. This is the original version which does not pass the MTUPLE test of the Diehard battery. It has a period of 4.6 x 10ˆ18 for most initial seeds. The seed is two integers (all values allowed for the first seed: the second must be odd).

We use the implementation by Reeds et al (1982{84).

The two seeds are the Tausworthe and congruence long integers, respectively. A one-to-one mapping to S’s .Random.seed[1:12] is possible but we will not publish one, not least as this generator is not exactly the same as that in recent versions of S-PLUS.

It exhibits 25 clear failures in the TestU01 Crush suite (L’Ecuyer, 2007).

"Mersenne-Twister":
From Matsumoto and Nishimura (1998); code updated in 2002. A twisted GFSR with period 2ˆ19937 and equidistribution in 623 consecutive dimensions (over the whole period). The ‘seed’ is a 624-dimensional set of 32-bit integers plus a current position in that set.

R uses its own initialization method due to B. D. Ripley and is not affected by the initialization issue in the 1998 code of Matsumoto and Nishimura addressed in a 2002 update.

It exhibits 2 clear failures in each of the TestU01 Crush and the BigCrush suite (L’Ecuyer, 2007).

"Knuth-TAOCP-2002":
A 32-bit integer GFSR using lagged Fibonacci sequences with subtraction. That is, the recurrence used is X[j]=(X[j-100]-X[j-37) mod 2ˆ30 and the ‘seed’ is the set of the 100 last numbers (actually recorded as 101 numbers, the last being a cyclic shift of the buffer). The period is around 2ˆ129

"Knuth-TAOCP":
An earlier version from Knuth (1997).

The 2002 version was not backwards compatible with the earlier version: the initialization of the GFSR from the seed was altered. R did not allow you to choose consecutive seeds, the reported ‘weakness’, and already scrambled the seeds. Otherwise, the algorithm is identical to Knuth-TAOCP-2002, with the same lagged Fibonacci recurrence formula.

Initialization of this generator is done in interpreted R code and so takes a short but noticeable time.

It exhibits 3 clear failure in the TestU01 Crush suite and 4 clear failures in the BigCrush suite (L’Ecuyer, 2007).

"L’Ecuyer-CMRG":
A ‘combined multiple-recursive generator’ from L’Ecuyer (1999), each element of which is a feedback multiplicative generator with three integer elements: thus the seed is a (signed) integer vector of length 6. The period is around 2ˆ191

The 6 elements of the seed are internally regarded as 32-bit unsigned integers. Neither the first three nor the last three should be all zero, and they are limited to less than 4294967087 and 4294944443 respectively.

This is not particularly interesting of itself, but provides the basis for the multiple streams used in package parallel.

It exhibits 6 clear failures in each of the TestU01 Crush and the BigCrush suite (L’Ecuyer, 2007).

"user-supplied":
Use a user-supplied generator. See Random.user for details.



The R generator options

Options for R runif()

normal.kind can be "Kinderman-Ramage", "Buggy Kinderman-Ramage" (not for set.seed), "Ahrens-Dieter", "Box-Muller", "Inversion" (the default), or "user-supplied". (For inversion, see the reference in qnorm.) The Kinderman-Ramage generator used in versions prior to 1.7.0 (now called "Buggy") had several approximation errors and should only be used for reproduction of old results. The "Box-Muller" generator is stateful as pairs of normals are generated and returned sequentially. The state is reset whenever it is selected (even if it is the current normal generator) and when kind is changed.

sample.kind can be "Rounding" or "Rejection", or partial matches to these. The former was the default in versions prior to 3.6.0: it made sample noticeably non-uniform on large populations, and should only be used for reproduction of old results. See PR#17494 for a discussion.

set.seed uses a single integer argument to set as many seeds as are required. It is intended as a simple way to get quite different seeds by specifying small integer arguments, and also as a way to get valid seed sets for the more complicated methods (especially "Mersenne-Twister" and "Knuth-TAOCP"). There is no guarantee that different values of seed will seed the RNG differently, although any exceptions would be extremely rare. If called with seed = NULL it re-initializes (see ‘Note’) as if no seed had yet been set.

The use of kind = NULL, normal.kind = NULL or sample.kind = NULL in RNGkind or set.seed selects the currently-used generator (including that used in the previous session if the workspace has been restored): if no generator has been used it selects "default".



A simple uniform generator

The congruencial generator on {1, 2, . . . ,M}

f(x) = (ax+ b) mod (M)

has a period equal to M for proper choices of (a, b) and becomes
a generator on ]0, 1[ when dividing by M+ 1



A simple uniform generator

The congruencial generator on {1, 2, . . . ,M}

f(x) = (ax+ b) mod (M)

has a period equal to M for proper choices of (a, b) and becomes
a generator on ]0, 1[ when dividing by M+ 1

Example
Take

f(x) = (69069069x+ 12345) mod (232)

and produce
... 518974515 2498053016 1113825472 1109377984 ...
i.e.
... 0.1208332 0.5816233 0.2593327 0.2582972 ...
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A simple uniform generator

The congruencial generator on {1, 2, . . . ,M}

f(x) = (ax+ b) mod (M)

has a period equal to M for proper choices of (a, b) and becomes
a generator on ]0, 1[ when dividing by M+ 1



Approximating π

My daughter’s pseudo-code:
N=1000
π̂ = 0

for I=1,N do
X=RDN(1), Y=RDN(1)
if X2 + Y2 < 1 then
π̂ = π̂+ 1

end if
end for
return 4*π̂/N
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pi = 3.136

10,000 simulations



Approximating π

My daughter’s pseudo-code:
N=1000
π̂ = 0

for I=1,N do
X=RDN(1), Y=RDN(1)
if X2 + Y2 < 1 then
π̂ = π̂+ 1

end if
end for
return 4*π̂/N

106 simulations
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Interlude #2: Fibonacci generators

Recall that Fibonacci sequence defined by recurrence

Sn = Sn−1 + Sn−2

that can be generalised into

Sn ≡ Sn−j ⋆ Sn−k (mod m), 0 < j < k

where
▶ m usually a power of 2 (m = 2M),
▶ ⋆ denotes a general binary operation (addition, subtraction,

multiplication, XOR).
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Interlude #2: Fibonacci generators

Maximum period of Fibonacci generators depends on choice of ⋆.
▶ For addition or subtraction, max = (2k− 1) × 2M−1

▶ For multiplication, max = (2k− 1) × 2M−3

▶ For bitwise XOR, max = 2k−1

Examples of valid∗ (j, k)’s:

(24, 55), (38, 89), (37, 100), (30, 127), (83, 258), (107, 378), (273, 607)

(576, 3217), (4187, 9689), (7083, 19937), (9739, 23209)

Example of the (default) Mersenne twister with period 219937 − 1

[Matsumoto & Nishimura, 1997]

∗Polynomial must be primitive over the integers mod 2.
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Why is it complicated to sample from the posterior
distribution if we already KNOW it?

[Cross Validated, Stack Exchange]



Beyond Uniform generators

• Generation of any sequence of random variables can be
formally implemented through a uniform generator

◦ Distributions with explicit F− (for instance, exponential,
and Weibull distributions), use the probability integral
transform here

◦ Case specific methods rely on unique properties of the
distribution (e.g., Normal distribution, Poisson
distribution)

◦ Generic methods (for instance, accept-reject here and
ratio-of-uniform here )

• Simulation of standard distributions solved quite efficiently by
many numerical and statistical programming packages.
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Distributions that differ from uniform distributions

Problem
Given probability distribution with
density f, how can we produce
randomness according to f?!

▶ implemented algorithms in a
resident software only available for
common distributions

▶ new distributions may require fast
resolution

▶ no approximation allowed

x

f (
x)

Example of an arbitrary density
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Simulation 101: The inverse transform method

For a function F on R, the generalized inverse of F, F−, is defined
by

F−(u) = inf {x; F(x) ≥ u} .

Definition (Probability Integral Transform)
If U ∼ U[0,1], then the random variable F−(U) is distributed from F.
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The inverse transform method (2)

To generate a random variable X ∼ F, simply generate

U ∼ U[0,1]

and then make the transform

x = F−(u)



The inverse transform method (2)

To generate a random variable X ∼ F, simply generate

U ∼ U[0,1]

and then make the transform

x = F−(u)



Transformation methods

1 Motivations

2 Random variable generation
Uniform generators
Interlude #2: Fibonacci generators
Beyond Uniform distributions
Transformation methods
Accept-Reject Methods
Interlude #3: Log-concave densities
Ratio of Uniforms

3 Monte Carlo integration

4 Monte Carlo Optimization



Transformation methods

Case where a distribution F is linked in a simple way to another
distribution easy to simulate/already available

Example (Exponential variables)
If U ∼ U[0,1], the random variable

X = − logU/λ

has distribution

P(X ≤ x) = P(− logU ≤ λx)

= P(U ≥ e−λx) = 1− e−λx,

Exponential distribution E xp(λ).



Further standard distributions

Other random variables that can be generated starting from an
exponential include

Y = −2

ν∑
j=1

log(Uj) ∼ χ22ν (chi-square)

Y = −
1

β

a∑
j=1

log(Uj) ∼ Ga(a, β) (Gamma)

Y =

∑a
j=1 log(Uj)∑a+b
j=1 log(Uj)

∼ Be(a, b) (Beta)



Points to note

◦ Transformation must be immediate/free to use
◦ There are more efficient algorithms for Gamma and Beta

random variables
◦ Cannot generate Gamma random variables with a non-integer

shape parameter
◦ For instance, cannot get a χ21 variable, which would get us a

N (0, 1) variable.



Box-Muller Normal Generator

Example (Normal variables)
If r, θ polar coordinates of (X1, X2), then,

r2 = X2
1 + X2

2 ∼ χ22 = E (1/2) and θ ∼ U [0, 2π]

Consequence: If U1, U2 iid U[0,1],

X1 =
√
−2 log(U1) cos(2πU2)

X2 =
√
−2 log(U1) sin(2πU2)

iid N (0, 1).
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Box-Muller Algorithm (2)

1. Generate U1, U2 iid U[0,1] ;
2. Define

x1 =
√
−2 log(u1) cos(2πu2) ,

x2 =
√
−2 log(u1) sin(2πu2) ;

3. Take x1 and x2 as two independent draws from N (0, 1).



Box-Muller Algorithm (3)

▶ Unlike algorithms based on the CLT,
this algorithm is exact

▶ Get two normals for the budget of
two uniforms

▶ Drawback (in speed)
in calculating log, cos and sin.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
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More transforms

Reject

Example (Poisson generation)
Poisson–exponential connection:
If N ∼ P(λ) and Xi ∼ E xp(λ), i ∈ N∗,

Pλ(N = k) =

Pλ(X1 + · · · + Xk ≤ 1 < X1 + · · · + Xk+1) .

[Poisson process]



More Poisson

Skip Poisson

• A Poisson can be simulated by generating E xp(1) till their
sum exceeds 1.

• This method is simple, but only practical for smal values of λ
as...

• ...on average, the number of exponential variables required is
λ.

• Other approaches are more suitable for large λ’s.



Atkinson’s Poisson (1979)

To generate N ∼ P(λ):

1. Define

β = π/
√
3λ, α = λβ and k = log c− λ− logβ;

2. Generate U1 ∼ U[0,1] and calculate

x = {α− log{(1− u1)/u1}}/β

until x > −0.5 ;

3. Define N = ⌊x+ 0.5⌋ and generate U2 ∼ U[0,1];

4. Accept N if

α− βx+ log (u2/{1+ exp(α− βx)}2) ≤ k+N log λ− logN!



Negative extension

▶ A generator of Poisson random variables can produce
Negative Binomial random variables since,

Y ∼ Ga(n, (1− p)/p) X|y ∼ P(y)

implies
X ∼ Neg(n, p)



Mixture representation

• The representation of the Negative Binomial is a particular
case of a mixture distribution

• The principle of a mixture representation is to represent a
density f as the marginal of another distribution, for example

f(x) =
∑
i∈Y

pi fi(x) ,

• If the component distributions fi(x) can be easily generated,
X can be obtained by first choosing fi with probability pi and
then generating an observation from fi.



Partitioned sampling

Special case of mixture sampling when

fi(x) = f(x) IAi
(x)

/ ∫
Ai

f(x)dx

and
pi = Pr(X ∈ Ai)

for a partition (Ai)i and available pi’s
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Accept-Reject algorithm

• Many distributions from which it is difficult, or even
impossible, to directly simulate.

• Another class of methods that only require us to know the
functional form of the density f of interest only up to a
multiplicative constant.

• The key to this method is to use a simpler (simulation-wise)
density g, the instrumental density , from which the simulation
from the target density f is actually done.



Fundamental theorem of simulation

Lemma
Simulating

X ∼ f(x)

equivalent to simulating

(X,U) ∼ U {(x, u) : 0 < u < f(x)} 0 2 4 6 8 10

0.
00

0.
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The Accept-Reject algorithm

Given a density of interest f, find a density g and a constant M
such that

f(x) ≤ Mg(x)

on the support of f.

Accept-Reject Algorithm

1. Generate X ∼ g, U ∼ U[0,1] ;
2. Accept Y = X if U ≤ f(X)/Mg(X) ;
3. Return to 1. otherwise.
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Given a density of interest f, find a density g and a constant M
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on the support of f.

Accept-Reject Algorithm

1. Generate X ∼ g, U ∼ U[0,1] ;
2. Accept Y = X if U ≤ f(X)/Mg(X) ;
3. Return to 1. otherwise.



Validation of the Accept-Reject method

Warranty:
This algorithm produces a variable Y distributed according to f



Two interesting properties

◦ First, it provides a generic method to simulate from any
density f that is known up to a multiplicative factor
Property particularly important in Bayesian calculations where
the posterior distribution

π(θ|x) ∝ π(θ) f(x|θ) .

is specified up to a normalizing constant
◦ Second, the probability of acceptance in the algorithm is
1/M, e.g., expected number of trials until a variable is
accepted is M (including normalizing constants)
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More interesting properties

◦ In cases f and g both probability densities, the constant M is
necessarily larger that 1.

◦ The size of M, and thus the efficiency of the algorithm, are
functions of how closely g can imitate f, especially in the tails

◦ For f/g to remain bounded, necessary for g to have tails
thicker than those of f.
It is e.g. impossible to use the A-R algorithm to simulate a
Cauchy distribution f using a Normal distribution g, however
the reverse works quite well.
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Illustration (1)

No Cauchy!

Example (Normal from a Cauchy)
Take

f(x) =
1√
2π

exp(−x2/2)

and
g(x) =

1

π

1

1+ x2
,

densities of the Normal and Cauchy distributions.
Then

f(x)

g(x)
=

√
π

2
(1+ x2) e−x2/2 ≤

√
2π

e
= 1.52

attained at x = ±1.
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Illustration (1)

Example (Normal from a Cauchy (2))
So probability of acceptance

1/1.52 = 0.66,

and, on the average, one out of every three simulated Cauchy
variables is rejected.



Illustration (2)

No Double!

Example (Normal/Double Exponential)
Generate a N (0, 1) by using a double-exponential distribution
with density

g(x|α) = (α/2) exp(−α|x|)

Then
f(x)

g(x|α)
≤

√
2

π
α−1e−α2/2

and minimum of this bound (in α) attained for

α⋆ = 1



Illustration (2)

Example (Normal/Double Exponential (2))
Probability of acceptance √

π/2e = .76

To produce one Normal random variable requires on the average
1/.76 ≈ 1.3 uniform variables.



Illustration (3)

truncate

Example (Gamma generation)
Illustrates a real advantage of the Accept-Reject algorithm
The Gamma distribution Ga(α,β) represented as the sum of α
exponential random variables, only if α is an integer



Illustration (3)

Example (Gamma generation (2))
Can use the Accept-Reject algorithm with instrumental distribution

Ga(a, b), with a = [α], α ≥ 0.

(Without loss of generality, β = 1.)
Up to a normalizing constant,

f/gb = b−axα−a exp{−(1− b)x} ≤ b−a

(
α− a

(1− b)e

)α−a

for b ≤ 1.
The maximum is attained at b = a/α.
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Cheng and Feast’s Gamma generator

Gamma Ga(α, 1), α > 1 distribution

1. Define c1 = α− 1, c2 = (α− (1/6α))/c1, c3 = 2/c1,
c4 = 1+ c3, and c5 = 1/

√
α.

2. Repeat
generate U1, U2

take U1 = U2 + c5(1− 1.86U1) if α > 2.5

until 0 < U1 < 1.
3. Set W = c2U2/U1.
4. If c3U1 +W +W−1 ≤ c4 or c3 logU1 − logW +W ≤ 1,

take c1W;
otherwise, repeat.



Truncated Normal simulation

Example (Truncated Normal distributions)
Constraint x ≥ µ produces density proportional to

e−(x−µ)2/2σ2

Ix≥µ

for a bound µ large compared with µ

There exists alternatives far superior to the näıve method of
generating a N (µ, σ2) until exceeding µ, which requires an average
number of

1/Φ((µ− µ)/σ)

simulations from N (µ, σ2) for a single acceptance.
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Truncated Normal simulation

Example (Truncated Normal distributions (2))
Instrumental distribution: translated exponential distribution,
E (α, µ), with density

gα(z) = αe−α(z−µ) Iz≥µ .

The ratio f/gα is bounded by

f/gα ≤

{
1/α exp(α2/2− αµ) if α > µ ,

1/α exp(−µ2/2) otherwise.
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Interlude #3: Log-concave densities

Densities f whose logarithm is concave, for instance Bayesian
posterior distributions such that

log π(θ|x) = log π(θ) + log f(x|θ) + c

concave



Interlude #3: Log-concave densities

Take
Sn = {xi, i = 0, 1, . . . , n+ 1} ⊂ supp(f)

such that h(xi) = log f(xi) known up to the same constant.
By concavity of h, line Li,i+1 through
(xi, h(xi)) and (xi+1, h(xi+1))

▶ below h in [xi, xi+1] and
▶ above this graph outside this interval x 1 x 2 x 3 x 4

x

L    (x)2,3

log f(x)



Interlude #3: Log-concave densities

For x ∈ [xi, xi+1], if

hn(x) = min{Li−1,i(x), Li+1,i+2(x)} and hn(x) = Li,i+1(x) ,

the envelopes are
hn(x) ≤ h(x) ≤ hn(x)

uniformly on the support of f, with

hn(x) = −∞ and hn(x) = min(L0,1(x), Ln,n+1(x))

on [x0, xn+1]
c.



Interlude #3: Log-concave densities

Therefore, if

fn(x) = exphn(x) and fn(x) = exphn(x)

then
fn(x) ≤ f(x) ≤ fn(x) = ϖn gn(x) ,

where ϖn normalizing constant of fn



Interlude #3: ARS Algorithm

1. Initialize n and Sn.
2. Generate X ∼ gn(x), U ∼ U[0,1].
3. If U ≤ fn(X)/ϖn gn(X), accept X;

otherwise, if U ≤ f(X)/ϖn gn(X), accept X



Interlude #3: Log-concave densities

kill ducks

Example (Northern Pintail ducks)
Ducks captured at time i with both probability pi and
size N of the population unknown.
Dataset

(n1, . . . , n11) = (32, 20, 8, 5, 1, 2, 0, 2, 1, 1, 0)

Number of recoveries over the years 1957–1968 of 1612
Northern Pintail ducks banded in 1956



Interlude #3: Log-concave densities

Example (Northern Pintail ducks (2))
Corresponding conditional likelihood

L(n1, . . . , nI|N,p1, . . . , pI) ∝
I∏

i=1

pni
i (1− pi)

N−ni ,

where I number of captures, ni number of captured animals during
the ith capture, and r is the total number of different captured
animals.



Interlude #3: Log-concave densities

Example (Northern Pintail ducks (3))
Prior selection
If

N ∼ P(λ)

and
αi = log

(
pi

1− pi

)
∼ N (µi, σ

2),

[Normal logistic]



Interlude #3: Log-concave densities

Example (Northern Pintail ducks (4))
Posterior distribution

π(α,N|, n1, . . . , nI) ∝ N!

(N− r)!

λN

N!

I∏
i=1

(1+ eαi)−N

I∏
i=1

exp
{
αini −

1

2σ2
(αi − µi)

2

}



Interlude #3: Log-concave densities

Example (Northern Pintail ducks (5))
For the conditional posterior distribution

π(αi|N,n1, . . . , nI) ∝ exp
{
αini −

1

2σ2
(αi − µi)

2

}/
(1+eαi)N ,

the ARS algorithm can be implemented since

αini −
1

2σ2
(αi − µi)

2 −N log(1+ eαi)

is concave in αi.



Interlude #3: Log-concave densities

Posterior distributions of capture log-odds ratios for the
years 1957–1965.
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Interlude #3: Log-concave densities
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True distribution versus histogram of simulated sample



Slice sampler

There exist other ways of exploiting the fundamental lemma (of
simulation over the density subgraph)

[Damien & al., 1999; Neal, 2003]



Slice sampler

There exist other ways of exploiting the fundamental lemma (of
simulation over the density subgraph)

If direct uniform simulation on

Sf = {(u, x); 0 ≤ u ≤ f(x)}

is too complex [because of unavailable hat/instrumental
distribution] use instead a random walk on Sf

[Damien & al., 1999; Neal, 2003]



Slice sampler

There exist other ways of exploiting the fundamental lemma (of
simulation over the density subgraph)

can be achieved by making random jumps in vertical then
horizontal directions, accounting for the boundaries
▶ 0 ≤ u ≤ f(x), i.e. U(0, 1)

▶ f(x) ≥ u, i.e. x ∼ US(u)

Justification by Markov chain theory: ergodic chain with
Uniform stationary and limiting distribution

[Damien & al., 1999; Neal, 2003]



Slice sampler

Slice sampler algorithm
For t = 1, . . . , T

when at (x(t),ω(t)) simulate
1. ω(t+1) ∼ U[0,f(x(t))]

2. x(t+1) ∼ US(t+1) , where

S(t+1) = {y; f(y) ≥ ω(t+1)}.
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Ratio of uniforms principle

Consider the set A of (u, v)’s in R+ × X such that

0 ≤ u2 ≤ f(v/u)

Then a uniform distribution on A induces the distribution with
density proportional to f on V/U.

[Kinderman and Monahan’s (1977)]



Ratio of uniforms validation

Consider the change of variables from (u, v) to (u,w = v/u) with
Jacobian u, then (u,w) has the density

u I
(0,f(w)1/2)

(u)

Integrating out u leads to∫ f(w)
1/2

0

u du = f(w)
1/2×2 = f(w)

as proportional to the density of V/U



Ratio of uniforms implementation

Simulating a uniform distribution on A means identifying the
region within a simple box B



Ratio of uniforms implementation

Simulating a uniform distribution on A means identifying the
region within a simple box B
Boundaries of A given by

Ab = {(u(x) = f(x)
1/2, v(x) = xf(x)

1/2); x ∈ X }



Ratio of uniforms implementation

Simulating a uniform distribution on A means identifying the
region within a simple box B
Boundaries of A given by

Ab = {(u(x) = f(x)
1/2, v(x) = xf(x)

1/2); x ∈ X }



Ratio of uniforms implementation

There exists a compact box B containing A iff

0 ≤ f(x) ≤ f̄ 0 ≤ xf(x)
1/2 ≤ f̃

Applications to standard distributions like Student’s t

[Devroye, 1986, Section 3.7]

Example: Chen and Feast (1979) gamma generator (R rgamma) is
a ratio of uniforms algorithm



Ratio of uniforms implementation

There exists a compact box B containing A iff

0 ≤ f(x) ≤ f̄ 0 ≤ xf(x)
1/2 ≤ f̃

Applications to standard distributions like Student’s t

[Devroye, 1986, Section 3.7]

Example: Chen and Feast (1979) gamma generator (R rgamma) is
a ratio of uniforms algorithm



Ratio of uniforms generalisation
Principle that can be generalised to a monotone transform of f,
h(f), and the set

H = {(u, v); 0 ≤ u ≤ h(f(v/g(u)))}

which still produces a distribution with density proportional to f

when
g(x) = dG/dx(x) G(x) = h−1(x)



Ratio of uniforms generalisation

▶ choice of transform f most adequate for a given f

▶ slice sampler deduced from this construct
▶ case of an unbounded density f



Ratio of uniforms generalisation (2)

In dimension d, when generating a Uniform random variable over

C(r) =

{
(u, v1, . . . , vd) : 0 < u ≤

[
f

(
v1
ur

, . . . ,
vd
ur

)]1/(rd+1)
}

r > 0

then
(v1/u

r, . . . , vd/u
r) ∼ f(x)

/ ∫
f(y( dy

[Wakefield & al., 1991; Northop & al., 2016]



Example: multivariate Normal distribution

Standard d-dimensional Normal distribution

f(x) ∝ exp

−1

2

d∑
i=1

x2i


maximal probability of acceptance occurs when r = 1/2

pa(d, 1/2) =
(πe)d/2

2d(1+ d/2)1+d/2

which quickly decreases in d

[rust R package, P. Northop, 2024]



Ratio of uniforms generalisation (2)

[rust R package, P. Northop, 2024]
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Quick reminder

Two major classes of numerical problems that arise in statistical
inference

◦ Optimization - generally associated with the likelihood
approach

◦ Integration- generally associated with the Bayesian approach
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approach
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Illustration
skip Example!

Example (Bayesian decision theory)
Bayes estimators are not always posterior expectations, but rather
solutions of the minimization problem

min
δ

∫
Θ

L(θ, δ) π(θ) f(x|θ) dθ .

Proper loss:
For L(θ, δ) = (θ− δ)2, the Bayes estimator is the posterior mean
Absolute error loss:
For L(θ, δ) = |θ− δ|, the Bayes estimator is the posterior median
With no loss function
use the maximum a posteriori (MAP) estimator

arg max
θ

ℓ(θ|x)π(θ)
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Monte Carlo integration

Theme:
Generic problem of evaluating the integral

I = Ef[h(X)] =

∫
X

h(x) f(x) dx

where X is uni- or multidimensional, f is a closed form, partly
closed form, or implicit density, and h is a function



Monte Carlo integration (2)

Monte Carlo solution
First use a sample (X1, . . . , Xm) from the density f to approximate
the integral I by the empirical average

hm =
1

m

m∑
j=1

h(xj)

which converges
hm −→ Ef[h(X)]

by the Strong Law of Large Numbers



Monte Carlo integration (2)

Monte Carlo solution
First use a sample (X1, . . . , Xm) from the density f to approximate
the integral I by the empirical average

hm =
1

m

m∑
j=1

h(xj)

which converges
hm −→ Ef[h(X)]

by the Strong Law of Large Numbers



Monte Carlo precision

Estimate the variance with

vm =
1

m− 1

m∑
j=1

[h(xj) − hm]
2,

and for m large,

hm − Ef[h(X)]√
vm

∼ N (0, 1).

Note: This can lead to the construction of a convergence test and
of confidence bounds on the approximation of Ef[h(X)].



Illustration

Example (Cauchy prior/normal sample)
For estimating a normal mean, a robust prior is a Cauchy prior

X ∼ N (θ, 1), θ ∼ C(0, 1).

Under squared error loss, posterior mean

δπ(x) =

∫∞
−∞

θ

1+ θ2
e−(x−θ)2/2dθ∫∞

−∞
1

1+ θ2
e−(x−θ)2/2dθ



Illustration

Example (Cauchy prior/normal sample (2))
Form of δπ suggests simulating iid variables

θ1, · · · , θm ∼ N (x, 1)

and calculating

δ̂πm(x) =
m∑
i=1

θi

1+ θ2i

/ m∑
i=1

1

1+ θ2i
.

The Law of Large Numbers implies

δ̂πm(x) −→ δπ(x) as m −→ ∞.



Illustration
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Range of estimators δπm for 100 runs and x = 10
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Importance sampling

Paradox
Simulation from f (the true density) is not necessarily optimal

Alternative to direct sampling from f is importance sampling,
based on the alternative representation

Ef[h(X)] =

∫
X

[
h(x)

f(x)

g(x)

]
g(x) dx .

which allows us to use other distributions than f
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based on the alternative representation

Ef[h(X)] =

∫
X

[
h(x)

f(x)

g(x)

]
g(x) dx .

which allows us to use other distributions than f



Importance sampling algorithm

Evaluation of

Ef[h(X)] =

∫
X

h(x) f(x) dx

by
1. Generate a sample X1, . . . , Xn from a distribution g

2. Use the approximation

1

m

m∑
j=1

f(Xj)

g(Xj)
h(Xj)



Same thing as before!!!

Convergence of the estimator

1

m

m∑
j=1

f(Xj)

g(Xj)
h(Xj) −→ ∫

X
h(x) f(x) dx

converges for any choice of the distribution g

[as long as supp(g) ⊃ supp(f)]
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Important details

◦ Instrumental distribution g chosen from distributions easy to
simulate

◦ The same sample (generated from g) can be used repeatedly,
not only for different functions h, but also for different
densities f

◦ Even dependent proposals can be used, as seen later
PMC chapter



Important choice

Although g can be any density, some choices are better than
others:

◦ Finite variance only when

Ef

[
h2(X)

f(X)

g(X)

]
=

∫
X

h2(x)
f2(X)

g(X)
dx < ∞ .

◦ Instrumental distributions with tails lighter than those of f
(that is, with sup f/g = ∞) not appropriate.

◦ If sup f/g = ∞, the weights f(xj)/g(xj) vary widely, giving
too much importance to a few values xj.

◦ If sup f/g = M < ∞, the accept-reject algorithm can be used
as well to simulate f directly.
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Illustration

Example (Cauchy target)
Case of Cauchy distribution C(0, 1) when importance function is
Gaussian N (0, 1).
Ratio of the densities

ρ(x) =
p⋆(x)

p0(x)
=

√
2π

exp x2/2

π (1+ x2)

very badly behaved: e.g.,∫∞
−∞ ρ(x)2p0(x)dx = ∞ .

Poor performances of the associated importance sampling
estimator



Illustration
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E[exp−X] over 10, 000 iterations.
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Interlude #4: Harmonic mean estimator

Estimating
Z(x) =

∫
π(θ)L(θ)L(θ|x) dθ

via [harmonic mean] identity

Eπ

[
φ(θ)

πθ)L(θ|x)

∣∣∣∣ x] = ∫
φ(θ)

π(θ)L(θ|x)

π(θ|x)︷ ︸︸ ︷
π(θ)L(θ|x)

Z(x)
dθ =

1

Z(x)

no matter what the proposal φ(·) is.
[Gelfand & Dey, 1994; Bartolucci et al., 2006]

Direct exploitation of the posterior simulation output
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Interlude #4: Harmonic mean estimator

Original version with φ(·) = π(·)

Ẑ(x) = 1

/
1

T

T∑
t=1

φ(θ(t))

π(θ(t))L(θ(t)|x)
θ(t) ∼ π(θ|x)

[Newton & Raftery, 1994]

“The bad news is that the number of points required for
this estimator to get close to the right answer will often be
greater than the number of atoms in the observable uni-
verse. The even worse news is that it’s easy for people to
not realize this, and to näıvely accept estimates that are
nowhere close to the correct value of the marginal likeli-
hood.” R. Neal’s blog, 17/08/2008
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Illustration: Normal mean (Neal, 2008)

Take X|θ ∼ N (θ, σ2
1) and θ ∼ N (0, σ2

0)
Define

harmonic.mean.marg.lik <- function (x, s0, s1, n)
{ post.prec <- 1/s0 + 1/s1

t <- rnorm(n,(x/s1)/post.prec,sqrt(1/post.prec))
lik <- dnorm(x,t,s1)
1/mean(1/lik)

}



Illustration: Normal mean (Neal, 2008)

Take X|θ ∼ N (θ, σ2
1) and θ ∼ N (0, σ2

0)

> for (i in 1:5)
+ print(harmonic.mean.marg.lik(2,10,1,1e7))
[1] 0.08439447
[1] 0.0989342
[1] 0.0973829
[1] 0.08654892
[1] 0.09364961

> true.marg.lik(2,10,1)
[1] 0.03891791



Worst Monte Carlo Method Ever

“My characterization of the harmonic mean of the likeli-
hood as the Worst Monte Carlo Method Ever is based not
just on its abysmal performance in most real problem, nor
just on the fact that users of the method generally do not
realize its poor performance, but also on the continued use
of this method despite these flaws, due partly to wishful
thinking on the part of its users, but also due to the con-
nivance or negligence of many in the statistical community
who ought to know better.” R. Neal’s blog, 17/08/2008



Optimal importance function

The choice of g that minimizes the variance of the
importance sampling estimator is

g∗(x) =
|h(x)| f(x)∫

Z |h(z)| f(z) dz
.

Rather formal optimality result since optimal choice of g∗(x)
requires the knowledge of I, the integral of interest!
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Practical impact

∑m
j=1 h(Xj) f(Xj)/g(Xj)∑m

j=1 f(Xj)/g(Xj)
,

where f and g are known up to constants.
◦ Also converges to I by the Strong Law of Large Numbers.
◦ Biased, but the bias is quite small
◦ In some settings beats the unbiased estimator in squared error

loss.
◦ Using the ‘optimal’ solution does not always work:∑m

j=1 h(xj) f(xj)/|h(xj)| f(xj)∑m
j=1 f(xj)/|h(xj)| f(xj)

=
#positive h− #negative h∑m

j=1 1/|h(xj)|



Practical impact

∑m
j=1 h(Xj) f(Xj)/g(Xj)∑m

j=1 f(Xj)/g(Xj)
,

where f and g are known up to constants.
◦ Also converges to I by the Strong Law of Large Numbers.
◦ Biased, but the bias is quite small
◦ In some settings beats the unbiased estimator in squared error

loss.
◦ Using the ‘optimal’ solution does not always work:∑m

j=1 h(xj) f(xj)/|h(xj)| f(xj)∑m
j=1 f(xj)/|h(xj)| f(xj)

=
#positive h− #negative h∑m

j=1 1/|h(xj)|



Selfnormalised importance sampling

For ratio estimator

δnh =
n∑
i=1

ωi h(xi)

/ n∑
i=1

ωi

with Xi ∼ g(y) and Wi such that

E[Wi|Xi = x] = κf(x)/g(x)



Selfnormalised variance

then

var(δnh) ≈ 1

n2κ2

(
var(Snh) − 2Eπ[h] cov(Snh, Sn1 ) + Eπ[h]2 var(Sn1 )

)
.

for

Snh =
n∑
i=1

Wih(Xi) , Sn1 =
n∑
i=1

Wi

Rough approximation

varδnh ≈ 1

n
varπ(h(X)) {1+ varg(W)}



Example (Student’s t distribution)
X ∼ T (ν, θ, σ2), with density

fν(x) =
Γ((ν+ 1)/2)

σ
√
νπ Γ(ν/2)

(
1+

(x− θ)2

νσ2

)−(ν+1)/2

.

Without loss of generality, take θ = 0, σ = 1.
Problem: Calculate the integral∫∞

2.1

(sin(x)
x

)n

fν(x)dx.



Example (Student’s t distribution (2))

• Simulation possibilities
◦ Directly from fν, since fν = N (0,1)√

χ2ν

◦ Importance sampling using Cauchy C (0, 1)
◦ Importance sampling using a normal N (0, 1)

(expected to be nonoptimal)
◦ Importance sampling using a U ([0, 1/2.1])

change of variables
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Interlude #5: IS suffers from curse of dimensionality

As dimension increases, discrepancy between importance and
target worsens

skip explanation

Explanation:
Take target distribution µ and instrumental distribution ν

Simulation of a sample of iid samples of size n x1:n from µn = µ
⊗

n

Importance sampling estimator for µn(fn) =
∫
fn(x1:n)µn(dx1:n)

µ̂n(fn) =

∑N
i=1 fn(ξ

i
1:n)

∏N
j=1 W

i
j∑N

j=1

∏N
j=1 Wj

,

where Wi
k = dµ

dν
(ξik), and ξij are iid with distribution ν.

For {Vk}k≥0, sequence of iid nonnegative random variables and for
n ≥ 1, Fn = σ(Vk;k ≤ n), set

Un =

n∏
k=1

Vk
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Interlude #5: IS suffers (2)

Since E[Vn+1] = 1 and Vn+1 independent from Fn,

E(Un+1 | Fn) = UnE(Vn+1 | Fn) = Un,

and thus {Un}n≥0 martingale
Since x 7→ √

x concave, by Jensen’s inequality,

E(
√

Un+1 | Fn) ≤
√
E(Un+1 | Fn) ≤

√
Un

and thus {
√
Un}n≥0 supermartingale

Assume E(
√
Vn+1) < 1. Then

E(
√
Un) =

n∏
k=1

E(
√
Vk) → 0, n → ∞.



Interlude #5: IS suffers (3)

But {
√
Un}n≥0 is a nonnegative supermartingale and thus

√
Un

converges a.s. to a random variable Z ≥ 0. By Fatou’s lemma,

E(Z) = E
(

lim
n→∞

√
Un

)
≤ lim inf

n→∞ E(
√
Un) = 0.

Hence, Z = 0 and Un → 0 a.s., which implies that the martingale
{Un}n≥0 is not regular.
Apply these results to Vk = dµ

dν
(ξik), i ∈ {1, . . . ,N}:

E

[√
dµ

dν
(ξik)

]
≤ E

[
dµ

dν
(ξik)

]
= 1.

with equality iff dµ
dν

= 1, ν-a.e., i.e. µ = ν.

Thus all importance weights converge to 0



too volatile!

Example (Stochastic volatility model)

yt = β exp (xt/2) ϵt , ϵt ∼ N (0, 1)

with AR(1) log-variance process (or volatility)

xt+1 = φxt + σut , ut ∼ N (0, 1)



Evolution of IBM stocks (corrected from trend and log-ratio-ed)
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Example (Stochastic volatility model (2))
Observed likelihood unavailable in closed from.
Joint posterior (or conditional) distribution of the hidden state
sequence {Xk}1≤k≤K can be evaluated explicitly

K∏
k=2

exp−
{
σ−2(xk − ϕxk−1)

2 + β−2 exp(−xk)y
2
k + xk

}
/2 , (1)

up to a normalizing constant.



Computational problems

Example (Stochastic volatility model (3))
Direct simulation from this distribution impossible because of
(a) dependence among the Xk’s,
(b) dimension of the sequence {Xk}1≤k≤K, and
(c) exponential term exp(−xk)y

2
k within (1).



Importance sampling

Example (Stochastic volatility model (4))
Natural candidate: replace the exponential term with a quadratic
approximation to preserve Gaussianity.
E.g., expand exp(−xk) around its conditional expectation ϕxk−1 as

exp(−xk) ≈ exp(−ϕxk−1)

{
1− (xk − ϕxk−1) +

1

2
(xk − ϕxk−1)

2

}



Example (Stochastic volatility model (5))
Corresponding Gaussian importance distribution with mean

µk =
ϕxk−1{σ

−2 + y2
k exp(−ϕxk−1)/2}− {1− y2

k exp(−ϕxk−1)}/2

σ−2 + y2
k exp(−ϕxk−1)/2

and variance

τ2k = (σ−2 + y2
k exp(−ϕxk−1)/2)

−1

Prior proposal on X1,
X1 ∼ N (0, σ2)



Example (Stochastic volatility model (6))
Simulation starts with X1 and proceeds forward to Xn, each Xk

being generated conditional on Yk and the previously generated
Xk−1.
Importance weight computed sequentially as the product of

exp−
{
σ−2(xk − ϕxk−1)

2 + exp(−xk)y
2
k + xk

}
/2

exp−
{
τ−2
k (xk − µk)2

}
τ−1
k

.

(1 ≤ k ≤ K)
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Correlated simulations

Negative correlation reduces variance
Special technique — but efficient when it applies
Two samples (X1, . . . , Xm) and (Y1, . . . , Ym) from f to estimate

I =

∫
R

h(x)f(x)dx

by

Î1 =
1

m

m∑
i=1

h(Xi) and Î2 =
1

m

m∑
i=1

h(Yi)

with mean I and variance σ2



Variance reduction

Variance of the average

var
(
Î1 + Î2

2

)
=

σ2

2
+

1

2
cov(Î1, Î2).

If the two samples are negatively correlated,

cov(Î1, Î2) ≤ 0 ,

they improve on two independent samples of same size



Antithetic variables

◦ If f symmetric about µ, take Yi = 2µ− Xi

◦ If Xi = F−1(Ui), take Yi = F−1(1−Ui)

◦ If (Ai)i partition of X , partitioned sampling by sampling
Xj’s in each Ai (requires to know Pr(Ai))



Control variates

out of control!

For
I =

∫
h(x)f(x)dx

unknown and
I0 =

∫
h0(x)f(x)dx

known,
I0 estimated by Î0 and
I estimated by Î



Control variates (2)

Combined estimator

Î∗ = Î + β(Î0 − I0)

Î∗ is unbiased for I and

var(Î∗) = var(Î) + β2var(Î) + 2βcov(Î, Î0)



Optimal control

Optimal choice of β

β⋆ = −
cov(Î, Î0)
var(Î0)

,

with
var(Î⋆) = (1− ρ2) var(Î) ,

where ρ correlation between Î and Î0
Usual solution: regression coefficient of h(xi) over h0(xi)



Illustration

Example (Quantile Approximation)
Evaluate

ρ = Pr(X > a) =

∫∞
a

f(x)dx

by

ρ̂ =
1

n

n∑
i=1

I(Xi > a),

with Xi iid f.
If Pr(X > µ) = 1

2 known



Illustration

Example (Quantile Approximation (2))
Control variate

ρ̃ =
1

n

n∑
i=1

I(Xi > a) + β

 1

n

n∑
i=1

I(Xi > µ) − Pr(X > µ)


improves upon ρ̂ if

β < 0 and |β| < 2
cov(ρ̂, ρ̂0)
var(ρ̂0)

2
Pr(X > a)

Pr(X > µ)
.
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.



Integration by conditioning

Use Rao-Blackwell Theorem

var(E[δ(X)|Y ]) ≤ var(δ(X))



Consequence

If Î unbiased estimator of I = Ef[h(X)], with X simulated from a
joint density f̃(x, y), where∫

f̃(x, y)dy = f(x),

the estimator
Î∗ = Ef̃[Î|Y1, . . . , Yn]

dominate Î(X1, . . . , Xn) variance-wise (and is unbiased)



Illustration

skip expectation

Example (Student’s t expectation)
For

E[h(x)] = E[exp(−x2)] with X ∼ T (ν, 0, σ2)

a Student’s t distribution can be simulated as

X|y ∼ N (µ, σ2y) and Y−1 ∼ χ2ν.



Illustration

Example (Student’s t expectation (2))
Empirical distribution

1

m

m∑
j=1

exp(−X2
j ) ,

can be improved from the joint sample

((X1, Y1), . . . , (Xm, Ym))

since
1

m

m∑
j=1

E[exp(−X2)|Yj] =
1

m

m∑
j=1

1√
2σ2Yj + 1

is the conditional expectation.
In this example, precision ten times better
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Illustration
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conditional expectation (dotted) for (ν, µ, σ) = (4.6, 0, 1).
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Interlude #5: Accept–Reject method

Given a density f(·) to simulate take
g(·) density such that

f(x) ≤ Mg(x)

for M ≥ 1

To simulate X ∼ f, it is sufficient to
generate

Y ∼ g U|Y = y ∼ U(0,Mg(y))

until
0 < u < f(y)



Interlude #5: Demarginalisation

Raw outcome: id sequences Y1, Y2, . . . , Yt ∼ g and
U1, U2, . . . , Ut ∼ U(0, 1)
Random number of accepted Yi’s

P(N = n) =

(
n− 1

t− 1

)
(1/M)t (1− 1/M)n−t ,



Interlude #5: Demarginalisation

Raw outcome: id sequences Y1, Y2, . . . , Yt ∼ g and
U1, U2, . . . , Ut ∼ U(0, 1)
Joint density of (N,Y ,U)

P(N = n, Y1 ≤ y1, . . . , Yn ≤ yn, U1 ≤ u1, . . . , Un ≤ un)

=

∫yn

−∞ g(tn)(un ∧wn)dtn

∫y1

−∞ . . .

∫yn−1

−∞ g(t1) . . . g(tn−1)

×
∑

(i1,··· ,it−1)

t−1∏
j=1

(wij ∧ uij)
n−1∏
j=t

(uij −wij)
+dt1 · · ·dtn−1,

where wi = f(yi)/Mg(yi) and sum over all subsets of
{1, . . . , n− 1} of size t− 1



Interlude #5: Demarginalisation

Raw outcome: id sequences Y1, Y2, . . . , Yt ∼ g and
U1, U2, . . . , Ut ∼ U(0, 1)
Marginal joint density of (Yi, Ui)|N = n, i < n

P(N = n, Y1 ≤ y,U1 ≤ u1)

=

(
n − 1

t − 1

)(
1

M

)t−1 (
1 −

1

M

)n−t−1

×
[
t − 1

n − 1
(w1 ∧ u1)

(
1 −

1

M

)
+

n − t

n − 1
(u1 −w1)

+
(

1

M

)] ∫y

−∞ g(t1)dt1

and marginal distribution of Yi

m(y) = t−1/n−1f(y) + n−t/n−1
g(y) − ρf(y)

1− ρ

P(U1 ≤ w(y)|Y1 = y,N = n) =
g(y)w(y)Mt−1/n−1

m(y)



Interlude #6: Demarginalisation

Accept-reject sample (X1, . . . , Xm) associated with (U1, . . . , UN)
and (Y1, . . . , YN)
N is stopping time for acceptance of m variables among Yj’s
Rewrite estimator of E[h] as

1

m

m∑
i=1

h(Xi) =
1

m

N∑
j=1

h(Yj) IUj≤wj
,

with wj = f(Yj)/Mg(Yj)

[Robert & Casella, 1996]



Interlude #6: Demarginalisation

Rao-Blackwellisation: smaller variance produced by integrating
out the Ui’s,

1

m

N∑
j=1

E[IUj≤wj
|N, Y1, . . . , YN] h(Yj) =

1

m

N∑
i=1

ρih(Yi),

where (i < n)

ρi = P(Ui ≤ wi|N = n, Y1, . . . , Yn)

= wi

∑
(i1,...,im−2)

∏m−2
j=1 wij

∏n−2
j=m−1(1 −wij)∑

(i1,...,im−1)

∏m−1
j=1 wij

∏n−1
j=m(1 −wij)

,

and ρn = 1.
Numerator sum over all subsets of {1, . . . , i− 1, i+ 1, . . . , n− 1} of
size m− 2, and denominator sum over all subsets of size m− 1

[Robert & Casella, 1996]
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Simulation for optimisation

▶ Two uses of computer-generated random variables to solve
optimization problems.

▶ first use is to produce stochastic search techniques
To reach the maximum (or minimum) of a function
Avoid being trapped in local maxima (or minima)
Are sufficiently attracted by the global maximum (or
minimum).

▶ The second use of simulation is to approximate the function
to be optimized.



Introduction

▶ Optimization problems can mostly be seen as one of two
kinds:

Find the extrema of a function h(θ) over a domain Θ

Find the solution(s) to an implicit equation g(θ) = 0 over
a domain Θ.

▶ The problems are exchangeable
The second one is a minimization problem for a function
like h(θ) = g2(θ)
while the first one is equivalent to solving ∂h(θ)/∂θ = 0

▶ We only focus on the maximization problem



Deterministic or Stochastic

▶ Similar to integration, optimization can be deterministic or
stochastic

▶ Deterministic: performance dependent on properties of the
function

such as convexity, boundedness, and smoothness

▶ Stochastic (simulation)
Properties of h play a lesser role in simulation-based
approaches.

▶ Therefore, if h is complex or Θ is irregular, chose the
stochastic approach.



Numerical Optimization

▶ R has several embedded functions to solve optimization
problems

The simplest one is optimize (one dimensional)

Example
Maximizing a Cauchy likelihood C(θ, 1)
▶ When maximizing the likelihood of a Cauchy C(θ, 1) sample,

ℓ(θ|x1, . . . , xn) =
n∏
i=1

1

1+ (xi − θ)2
,

▶ The sequence of maxima (MLEs) → θ∗ = 0 when n → ∞.
▶ But the journey is not a smooth one...



Cauchy Likelihood (2)

▶ MLEs (left) at each sample size, n = 1, 500 , and plot of final
likelihood (right).

Why are the MLEs so wiggly?
The likelihood is not as well-behaved as it seems



Cauchy Likelihood (3)

▶ The likelihood ℓ(θ|x1, . . . , xn) =
∏n

i=1
1

1+(xi−θ)2

▶ Is like a polynomial of
degree 2n

▶ The derivative has 2n

zeros
▶ Hard to see if n = 500

▶ Here is n = 5



Newton-Raphson

▶ Similarly, nlm is a generic R function uses the
Newton–Raphson method

▶ Based on the recurrence relation

θi+1 = θi −

[
∂2h

∂θ∂θT (θi)

]−1
∂h

∂θ
(θi)

▶ where the matrix of the second derivatives is the Hessian

This method is perfect when h is quadratic
▶ But may also deteriorate when h is highly nonlinear

It also obviously depends on the starting point θ0 when h

has several minima.



A Basic Solution
▶ A natural if rudimentary way of using simulation to find

maxθ h(θ)

Simulate points over Θ according to an arbitrary
distribution f positive on Θ

Until a high value of h(θ) is observed

▶ Recall h(x) =
[cos(50x) + sin(20x)]2

▶ Max=3.8325

▶ Histogram of 103 runs



Stochastic Gradient Methods

▶ Generating direct simulations from the target can be difficult.
▶ Different stochastic approach to maximization
▶ Explore the surface in a

local manner.
▶ Can use θj+1 = θj + ϵj

▶ A Markov Chain
▶ The random component ϵj

can be arbitrary

▶ Can also use features of the function: Newton-Raphson
Variation

θj+1 = θj + αj∇h(θj) , αj > 0 ,

Where ∇h(θj) is the gradient
αj the step size



Stochastic Gradient Methods (2)

▶ In difficult problems
The gradient sequence will most likely get stuck in a
local extremum of h.

▶ Stochastic Variation

∇h(θj) ≈ h(θj + βjζj) − h(θj + βjζj)

2βj
ζj =

∆h(θj, βjζj)

2βj
ζj ,

(βj) is a second decreasing sequence
ζj is uniform on the unit sphere ||ζ|| = 1.

▶ We then use

θj+1 = θj +
αj

2βj
∆h(θj, βjζj) ζj



Likelihood optimisation

Practical optimisation of the likelihood function

θ⋆ = arg max
θ

L(θ|x) =
n∏
i=1

g(Xi|θ).

assuming X = (X1, . . . , Xn)iidg(x|θ)
▶ analytical resolution feasible for exponential families

∇T(θ)
n∑
i=1

S(xi) = n∇τ(θ)

▶ use of standard numerical techniques like Newton-Raphson

θ(t+1) = θ(t) + Iobs(X, θ(t))−1∇ℓ(θ(t))

with ℓ(.) log-likelihood and Iobs observed information matrix
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EM algorithm

Cases where g is too complex for the above to work

Special case when g is a marginal

g(x|θ) =

∫
Z
f(x, z|θ) dz

Z called latent or missing variable



Illustrations

▶ censored data

X = min(X∗, a) X∗ ∼ N (θ, 1)

▶ mixture model

X ∼ .3N1(µ0, 1) + .7N1(µ1, 1),

▶ desequilibrium model

X = min(X∗, Y∗) X∗ ∼ f1(x|θ) Y∗ ∼ f2(x|θ)



Completion

EM algorithm based on completing data x with z, such as

(X,Z) ∼ f(x, z|θ)

Z missing data vector and pair (X,Z) complete data vector

Conditional density of Z given x:

k(z|θ, x) =
f(x, z|θ)

g(x|θ)



Completion

EM algorithm based on completing data x with z, such as

(X,Z) ∼ f(x, z|θ)

Z missing data vector and pair (X,Z) complete data vector

Conditional density of Z given x:

k(z|θ, x) =
f(x, z|θ)

g(x|θ)



Likelihood decomposition

Likelihood associated with complete data (x, z)

Lc(θ|x, z) = f(x, z|θ)

and likelihood for observed data

L(θ|x)

such that

log L(θ|x) = E[log Lc(θ|x,Z)|θ0, x] − E[log k(Z|θ, x)|θ0, x] (2)

for any θ0, with integration operated against conditionnal
distribution of Z given observables (and parameters), k(z|θ0, x)



[A tale of] two θ’s

There are “two θ’s” ! : in (2), θ0 is a fixed (and arbitrary) value
driving integration, while θ both free (and variable)

Maximising observed likelihood

L(θ|x)

equivalent to maximise r.h.s. term in (2)

E[log Lc(θ|x,Z)|θ0, x] − E[log k(Z|θ, x)|θ0, x]



[A tale of] two θ’s

There are “two θ’s” ! : in (2), θ0 is a fixed (and arbitrary) value
driving integration, while θ both free (and variable)

Maximising observed likelihood

L(θ|x)

equivalent to maximise r.h.s. term in (2)

E[log Lc(θ|x,Z)|θ0, x] − E[log k(Z|θ, x)|θ0, x]



Intuition for EM

Instead of maximising wrt θ r.h.s. term in (2), maximise only

E[log Lc(θ|x,Z)|θ0, x]

Maximisation of complete log-likelihood impossible since z

unknown, hence substitute by maximisation of expected complete
log-likelihood, with expectation depending on term θ0
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E[log Lc(θ|x,Z)|θ0, x]

Maximisation of complete log-likelihood impossible since z

unknown, hence substitute by maximisation of expected complete
log-likelihood, with expectation depending on term θ0



Expectation–Maximisation

Expectation of complete log-likelihood denoted

Q(θ|θ0, x) = E[log Lc(θ|x,Z)|θ0, x]

to stress dependence on θ0 and sample x

Principle
EM derives sequence of estimators θ̂(j), j = 1, 2, . . ., through
iteration of Expectation and Maximisation steps:

Q(θ̂(j)|θ̂(j−1), x) = max
θ

Q(θ|θ̂(j−1), x).
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EM Algorithm

Iterate (in m)
1. (step E) Compute

Q(θ|θ̂(m), x) = E[log Lc(θ|x,Z)|θ̂(m), x] ,

2. (step M) Maximise Q(θ|θ̂(m), x) in θ and set

θ̂(m+1) = arg max
θ

Q(θ|θ̂(m), x).

until a fixed point [of Q] is found
[Dempster, Laird, & Rubin, 1978]



Justification

Observed likelihood
L(θ|x)

increases at every EM step

L(θ̂(m+1)|x) ≥ L(θ̂(m)|x)

[Exercice: use Jensen and (2)]



Censored data

Normal N (θ, 1) sample right-censored

L(θ|x) =
1

(2π)m/2
exp

{
−
1

2

m∑
i=1

(xi − θ)2

}
[1−Φ(a− θ)]n−m

Associated complete log-likelihood:

log Lc(θ|x, z) ∝ −
1

2

m∑
i=1

(xi − θ)2 −
1

2

n∑
i=m+1

(zi − θ)2 ,

where zi’s are censored observations, with density

k(z|θ, x) =
exp{− 1

2(z− θ)2}√
2π[1−Φ(a− θ)]

=
φ(z− θ)

1−Φ(a− θ)
, a < z.
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Censored data (2)

At j-th EM iteration

Q(θ|θ̂(j), x) ∝ −
1

2

m∑
i=1

(xi − θ)2 −
1

2
E

 n∑
i=m+1

(Zi − θ)2

∣∣∣∣∣∣ θ̂(j), x


∝ −
1

2

m∑
i=1

(xi − θ)2

−
1

2

n∑
i=m+1

∫∞
a

(zi − θ)2k(z|θ̂(j), x)dzi



Censored data (3)

Differenciating in θ,

n θ̂(j+1) = mx̄+ (n−m)E[Z|θ̂(j)] ,

with

E[Z|θ̂(j)] =
∫∞
a

zk(z|θ̂(j), x)dz = θ̂(j) +
φ(a− θ̂(j))

1−Φ(a− θ̂(j))
.

Hence, EM sequence provided by

θ̂(j+1) =
m

n
x̄+

n−m

n

[
θ̂(j) +

φ(a− θ̂(j))

1−Φ(a− θ̂(j))

]
,

which converges to likelihood maximum θ̂
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Mixtures
Mixture of two normal distributions with unknown means

.3N1(µ0, 1) + .7N1(µ1, 1),

sample X1, . . . , Xn and parameter θ = (µ0, µ1)
Missing data: Zi ∈ {0, 1}, indicator of component associated with
Xi ,

Xi|zi ∼ N (µzi , 1) Zi ∼ B(.7)
Complete likelihood

log Lc(θ|x, z) ∝ −
1

2

n∑
i=1

zi(xi − µ1)
2 −

1

2

n∑
i=1

(1 − zi)(xi − µ0)
2

= −
1

2
n1(µ̂1 − µ1)

2 −
1

2
(n − n1)(µ̂0 − µ0)

2

with

n1 =
n∑
i=1

zi , n1µ̂1 =
n∑
i=1

zixi , (n− n1)µ̂0 =
n∑
i=1

(1− zi)xi
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Mixtures (2)

At j-th EM iteration

Q(θ|θ̂(j), x) =
1

2
E
[
n1(µ̂1 − µ1)

2 + (n− n1)(µ̂0 − µ0)
2|θ̂(j), x

]
Differenciating in θ

θ̂(j+1) =


E
[
n1µ̂1

∣∣∣θ̂(j), x] /E [n1|θ̂(j), x
]

E
[
(n− n1)µ̂0

∣∣∣θ̂(j), x] /E [(n− n1)|θ̂(j), x
]




Mixtures (3)

Hence θ̂(j+1) given by


∑n

i=1 E
[
Zi

∣∣∣θ̂(j), xi] xi /∑n
i=1 E

[
Zi|θ̂(j), xi

]
∑n

i=1 E
[
(1− Zi)

∣∣∣θ̂(j), xi] xi /∑n
i=1 E

[
(1− Zi)|θ̂(j), xi

]


Conclusion
Step (E) in EM replaces missing data Zi with their conditional
expectation, given x (expectation that depend on θ̂(m)).



Mixtures (3)

−1 0 1 2 3

−
1

0
1

2
3

µ1

µ 2

EM iterations for several starting values



Properties

EM algorithm such that
▶ it converges to local maximum or saddle-point
▶ it depends on the initial condition θ(0)
▶ it really really depends on the initial condition θ(0)
▶ it hence requires several initial values when likelihood

multimodal



Simulated Annealing: Introduction

▶ This name is borrowed from Metallurgy:
▶ A metal manufactured by a slow decrease of temperature

(annealing)
Is stronger than a metal manufactured by a fast decrease
of temperature.

▶ The fundamental idea of simulated annealing methods
A change of scale, or red temperature
Allows for faster moves on the surface of the function h

to maximize.
Rescaling partially avoids the trapping attraction of local
maxima.

▶ As T decreases toward 0, the values simulated from this
distribution become concentrated in a narrower and narrower
neighborhood of the local maxima of h



simulated annealing algorithm

• Simulation method proposed by Metropolis et al. (1953)
• Starting from θ0, ζ is generated from

ζ ∼ Uniform in a neighborhood of θ0.

• The new value of θ is generated as

θ1 =

{
ζ with probability ρ = exp(∆h/T)∧ 1

θ0 with probability 1− ρ,

◦ ∆h = h(ζ) − h(θ0)

◦ If h(ζ) ≥ h(θ0), ζ is accepted
◦ If h(ζ) < h(θ0), ζ may still be accepted
◦ This allows escape from local maxima



Metropolis Algorithm - Comments
• Simulated annealing typically modifies the temperature T at

each iteration
• It has the form

Remark
1. Simulate ζ from an instrumental distribution

with density g(|ζ− θi|);

2. Accept θi+1 = ζ with probability

ρi = exp{∆hi/Ti} ∧ 1;

take θi+1 = θi otherwise.

3. Update Ti to Ti+1.

• All positive moves accepted
• As T ↓ 0

◦ Harder to accept downward moves ◦ No big
downward moves

• Not a Markov Chain - difficult to analyze



Simple Example
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▶ Trajectory:
Ti =

1
(1+i)2

▶ Log trajectory also
works

▶ Can Guarantee
Finding Global Max

▶ R code



Normal Mixture
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▶ Most sequences find max
▶ They visit both modes



Stochastic Approximation

▶ We now consider methods that work with the objective
function h

Rather than being concerned with fast exploration of the
domain Θ.

▶ Unfortunately, the use of those methods results in an
additional level of error

Due to this approximation of h.

▶ But, the objective function in many statistical problems can
be expressed as

h(x) = E[H(x, Z)]
This is the setting of so-called missing-data models



optimizing Monte Carlo approximations

▶ If h(x) = E[H(x, Z)], a Monte Carlo approximation is

ĥ(x) =
1

m

m∑
i=1

H(x, zi),

Zi’s are generated from the conditional distribution
f(z|x).

▶ This approximation yields a convergent estimator of h(x) for
every value of x

This is a pointwise convergent estimator
Its use in optimization setups is not recommended
Changing sample of Zi’s ⇒ unstable sequence of
evaluations
And a rather noisy approximation to arg maxh(x)



Bayesian Probit
Example: Bayesian analysis of a simple probit model

▶ Y ∈ {0, 1} has a distribution depending on a covariate X:

Pθ(Y = 1|X = x) = 1− Pθ(Y = 0|X = x) = Φ(θ0 + θ1x) ,

Illustrate with Pima.tr dataset, Y= diabetes indicator,
X=BMI

▶ Typically infer from the marginal posterior

arg max
θ0

∫ ∏
i=1

Φ(θ0+θ1xn)
yiΦ(−θ0−θ1xn)

1−yi dθ1 = arg max
θ0

h(θ0)

For a flat prior on θ and a sample (x1, . . . , xn).



Bayesian Probit – Importance Sampling

▶ No analytic expression for h
▶ The conditional distribution of θ1 given θ0 is also nonstandard

Use importance sampling with a t distribution with 5 df
Take µ = 0.1 and σ = 0.03 (MLEs)

▶ Importance Sampling Approximation

ĥ0(θ0) =
1

M

M∑
m=1

∏
i=1

Φ(θ0+θm1 xn)
yiΦ(−θ0−θm1 xn)

1−yit5(θ
m
1 ;µ, σ)

−1 ,



Importance Sampling Evaluation

▶ Plotting this approximation of h with t samples simulated for
each value of θ0

The maximization of the represented ĥ function is not to
be trusted as an approximation to the maximization of h.

▶ But, if we use the same t sample for all values of θ0
We obtain a much smoother function

▶ We use importance sampling based on a single sample of Zi’s
Simulated from an importance function g(z) for all values
of x
Estimate h with

ĥm(x) =
1

m

m∑
i=1

f(zi|x)

g(zi)
H(x, zi).



Importance Sampling Likelihood Representation
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▶ Top: 100 runs, different
samples

▶ Middle: 100 runs, same
sample

▶ Bottom: averages over
100 runs

▶ The averages over 100 runs are the same - but we will not do
100 runs

▶ R code: Run pimax(25) from mcsm



Comments

▶ This approach is not absolutely fool-proof
The precision of ĥm(x) has no reason to be independent
of x
The number m of simulations has to reflect the most
varying case.

▶ As in every importance sampling experiment
The choice of the candidate g is influential
In obtaining a good (or a disastrous) approximation of
h(x).

▶ Checking for the finite variance of the ratio
f(zi|x)H(x, zi)

/
g(zi)

Is a minimal requirement in the choice of g



Missing-Data models and demarginalization

▶ Missing data models are special cases of the representation
h(x) = E[H(x, Z)]

▶ These are models where the density of the observations can
be expressed as

g(x|θ) =

∫
Z
f(x, z|θ) dz .

▶ This representation occurs in many statistical settings
Censoring models and mixtures
Latent variable models (tobit, probit, arch, stochastic
volatility, etc.)
Genetics: Missing SNP calls



Mixture Model
Example: Normal mixture model as a missing-data model

▶ Start with a sample (x1, . . . , xn)
▶ Introduce a vector (z1, . . . , zn) ∈ {1, 2}n such that

Pθ(Zi = 1) = 1− Pθ(Zi = 2) = 1/4 , Xi|Zi = z ∼ N (µz, 1) ,

▶ The (observed) likelihood is then obtained as E[H(x,Z)] for

H(x, z) ∝
∏
i; zi=1

1

4
exp

{
−(xi − µ1)

2/2
} ∏

i; zi=2

3

4
exp

{
−(xi − µ2)

2/2
}
,

▶ We recover the mixture model
1

4
N (µ1, 1) +

3

4
N (µ2, 1)

As the marginal distribution of Xi.



Censored–Data Likelihood

Example: Censored–data likelihood
▶ Censored data may come from experiments

Where some potential observations are replaced with a
lower bound
Because they take too long to observe.

▶ Suppose that we observe Y1, . . ., Ym, iid, from f(y− θ)

And the (n−m) remaining (Ym+1, . . . , Yn) are censored
at the threshold a.

▶ The corresponding likelihood function is

L(θ|y) = [1− F(a− θ)]n−m
m∏
i=1

f(yi − θ),

F is the cdf associated with f



Recovering the observed data likelihood

▶ If we had observed the last n−m values
Say z = (zm+1, . . . , zn), with zi ≥ a (i = m+ 1, . . . , n),
We could have constructed the (complete data) likelihood

Lc(θ|y, z) =
m∏
i=1

f(yi − θ)
n∏

i=m+1

f(zi − θ) .

▶ Note that

L(θ|y) = E[Lc(θ|y,Z)] =
∫

Z
Lc(θ|y, z)f(z|y, θ) dz,

Where f(z|y, θ) is the density of the missing data
Conditional on the observed data
The product of the f(zi − θ)/[1− F(a− θ)]’s
f(z− θ) restricted to (a,+∞).



Comments

▶ When we have the relationship

g(x|θ) =

∫
Z
f(x, z|θ) dz .

Z merely serves to simplify calculations
it does not necessarily have a specific meaning

▶ We have the complete-data likelihood Lc(θ|x, z)) = f(x, z|θ)

The likelihood we would obtain
Were we to observe (x, z),the complete data

▶ REMEMBER:
g(x|θ) =

∫
Z
f(x, z|θ) dz .
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