Monte Carlo Methods

Université Paris-Dauphine & University of Warwick
http://www.ceremade.dauphine.fr/~xian

September 8, 2024

http://www.ceremade.dauphine.fr/~xian

textbook: Introducing
Monte Carlo Methods
with R by Christian. P.
Robert and George Casella
[trad. frangaise 2010;
japonaise 2011]

RiCEd
ErFhLoi
AL

TRt
aee—rn I
preres i

Motivations, Random Variable Generation
Monte Carlo Integration

Monte Carlo Optimization

1 Motivations

Monte Carlo

About

Monte Carlo is an official administrative
area of Monaco, specifically the ward of
Monte Carlo/Spélugues, where the
Monte Carlo Casino is located.

[Wikipedia]

Monte Carlo

About

Monte Carlo methods, or Monte Carlo
experiments, are a broad class of
computational algorithms that rely on
repeated random sampling to obtain
numerical results. The underlying
concept is to use randomness to solve
problems that might be deterministic in
principle.

[Stanislas Ulam]
[Wikipedia]

Monte Carlo

About

Monte Carlo methods, or Monte Carlo
experiments, are a broad class of
computational algorithms that rely on
repeated random sampling to obtain
numerical results. The underlying
concept is to use randomness to solve
problems that might be deterministic in
principle. The name comes from the
Monte Carlo Casino in Monaco, where
the primary developer of the method, :

physicist Stanislaw Ulam, was inspired [Cimetiere du Montparnasse]
by his uncle's gambling habits.

[Wikipedia]

Necessity to “(re)produce chance” on a computer

Evaluation of the behaviour of a complex system (network,
computer program, queue, particle system, atmosphere,
epidemics, economic actions, &tc)

Hurricane Floyd Coupled Model Forecast

60 hr Forecast

[© Office of Oceanic and Atmospheric Research]

Hlustrations

Necessity to “(re)produce chance” on a computer

Production of changing landscapes, characters, behaviours in
computer games and flight simulators

M DOWNLOAD T0 PSP

[© guides.ign.com]

Hlustrations

Necessity to “(re)produce chance” on a computer

Determine probabilistic properties of a new statistical
procedure or under an unknown distribution

(left) Estimation of the cdf F from a normal sample of 100 points;

(right) variation of this estimation over 200 normal samples

Hlustrations

Necessity to “(re)produce chance” on a computer

Validation of a probabilistic model

[N

i

Histogram of 103 variates from a distribution and fit by this distribution density

Necessity to “(re)produce chance” on a computer

Approximation of a integral

@ Atteindre une cible @

Sur une planche carrée de coté 1 m, on colorie en jaune le quart de disque comme sur la figure ci-contre: /4

Cette planche dfvien! lacible sur laquelle Mehdi envoie des fléchettes au hasard et de facon aléatoire
(on suppose qu'il ne rate jamais la planche).

On souhaite estimer la probabilité que Mehdi atteigne la zone colorée en jaune.

1. On se place dans le repére orthonormé donné sur la figure

On choisit de simuler un lancer par le choix au hasard de deux réels x et y dans [0; 1]
Le point d'impact de la fléchette sera repéré par les coordonnées (x; y)

a. Donner un critére sur x et y permettant de savoir si la zone colorée en jaune a été atteinte ou non

b. Simuler plusieurs lancers a 'aide d'une calculatrice, d'un tableur ou d'un logiciel de programmation, puis estimer la probabilité

que Mehdi atteigne la zone colorée en jaune.
2. En écrivant la probabilité cherchée comme le quotit
Mehdi atteigne la zone colorée en jaune.

ent de deux aires, calculer la valeur exacte de la probabilité pour que

[© my daughter's math book]

Hlustrations

Necessity to “(re)produce chance” on a computer
Maximisation of a weakly regular function/likelihood

8 4 6 7
4
6

5 |19 3 7.8

-~

© Dan Rice Sudoku blog]

Hlustrations

Necessity to “(re)produce chance” on a computer

Pricing of a complex financial product (exotic options)

|l mw«.}wwm,‘w ALY i

Simulation of a Garch(1,1) process and of its volatility (1 03 time units)

Hlustrations

Necessity to “(re)produce chance” on a computer

Training neural networks with simulated data, as e.g. in deep
leaning

OREILLY

Practical
Simulations for
Machine Learning

Using Synthetic Data for Al

Pairis and Mars Buttfield-Addlison,
im Nugent & Jen Manning

Hlustrations

Necessity to “(re)produce chance” on a computer

Replacing true data with synthetic data, to combine privacy
protection and learning

Original Dataset O Synthetic Dataset S

=9]

bo

o
»D ot/

- /

a3

Model

\ b

Generative g !

L O 4

Attacker A

[©Clearbox Al]

Hlustrations

Necessity to “(re)produce chance” on a computer

Handling complex statistical problems by approximate
Bayesian computation (ABC)

core principle

Simulate a parameter value (at random) and pseudo-data
from the likelihood until the pseudo-data is “close enough” to
the observed data, then
keep the corresponding parameter value

[Tavaré & al., 1999; Beaumont, Sisson & Tan, 2019]

Hlustrations

Necessity to “(re)produce chance” on a computer
Handling complex statistical problems by approximate
Bayesian computation (ABC)

demo-genetic inference

Scenario 1a| [N,
A

Genetic model of evolution from a
common ancestor (MRCA)
characterized by a set of parameters
that cover historical, demographic, and
genetic factors

Dataset of polymorphism (DNA sample)
observed at the present time

Necessity to “(re)produce chance” on a computer

Handling complex statistical problems by approximate
Bayesian computation (ABC)

Pygmies population demo-genetics

TIK |

Pygmies populations: do they
have a common origin? when
and how did they split from
non-pygmies populations? were
there more recent interactions
between pygmies and
non-pygmies populations? e

Population samples
®Pygmy © Non-pygmy

gz

h
—/EWD Cameroon Y ar

Crédit : Serge Bahuchet

604 individus, 12 populations non-pygmeées, 9
populations pygmées, 28 marqueurs

Verdu et al. (2009) Current Biology 19: 312-318

Interlude # 1: counting socks

1 Motivations

Interlude # 1: counting socks

Interlude # 1: A pedestrian example

paired and orphan socks

A drawer contains an unknown number of socks, some of which
can be paired and some of which are orphans (single). One takes
at random 11 socks without replacement from this drawer: no pair
can be found among those. What can we infer about the total
number of socks in the drawer?

Interlude # 1: A pedestrian example

paired and orphan socks

A drawer contains an unknown number of socks, some of which
can be paired and some of which are orphans (single). One takes
at random 11 socks without replacement from this drawer: no pair
can be found among those. What can we infer about the total
number of socks in the drawer?

sounds like an impossible task
one observation x = 11 and two unknowns, TNsocks and Mpairs

writing the likelihood is a challenge

A priori on socks

Given parameters Ngocks and MNpairs, set of socks

S = {S]) S]) ety Snpairs) snpairs) snpairs""]’ ct) Snsocks}

and 11 socks picked at random from S give X unique socks.

A priori on socks

Given parameters Ngocks and MNpairs, set of socks

S = {S]) S1 Yo snpairs) snpairs) snpairs""]’ ct) snsocks}

and 11 socks picked at random from S give X unique socks.

Rassmus’ reasoning

If you are a family of 3-4 persons then a guesstimate would be that
you have something like 15 pairs of socks in store. It is also
possible that you have much more than 30 socks. So as a prior for
Tsocks |'M going to use a negative binomial with mean 30 and
standard deviation 15.

On Mpairs/2ne, s I'm going to put a Beta prior distribution that puts
most of the probability over the range 0.75 to 1.0,

[Rassmus Baath's Research Blog, Oct 20th, 2014]

Simulating the experiment

Given a prior distribution on Ngocks and Mpairs,
Msocks ~ N69(3O)]5) T1pairs|nsocks ~ ns°°k5/266(15) 2)

possible to

1 . gen erate new va | ues Prior on n_socks Resulting prior on n_pairs
of Msocks and Mpairs,

2. generate a new

1 T T T 1 T T T T 1
Observatlon Of X’ 0 20 a0 60 80 0 10 20 30 a0
number of un |q ue R e N e

Prior on prop_pairs Resulting prior on n_odd

socks out of 11.

Propartion of socks in pairs Number of odd socks

Simulating the experiment

Given a prior distribution on Ngocks and Mpairs,
Msocks ~ N69(3O)]5) T1pairs|nsocks ~ ns°°k5/266(15) 2)

possible to

1. generate new values Prior on n_socks e e
of Msocks and Mpairs,

2. generate a new

1 T T T 1 T T T T 1
Observatlon Of X’ 0 20 a0 60 80 0 10 20 30 a0
number of un |q ue R e N e

Prior on prop_pairs Resulting prior on n_odd

socks out of 11.

3. accept the pair
(nSOCkS)npairs) if the
reallsatlon Of X IS oo Wz @Y 06 08 10 0 5 10 15 20 25
equal to 11

Propartion of socks in pairs Number of odd socks

L
L

Density
Density

L
L

0000 0005 0010 0015 0020 0025 0030
L L

000 001 002 003 004 005 006
L

The outcome of this simulation method returns a distribution on
the pair (Nsocks) Npairs) that is the conditional distribution of the

pair given the observation X = 11
Generations from 7t(1nsocks, Mpairs) are accepted with probability

IP{X =1 1|(nsock5) npairs)}

L
L

Density
Density

L
L

0000 0005 0010 0015 0020 0025 0030
L L

000 001 002 003 004 005 006
L

The outcome of this simulation method returns a distribution on
the pair (Nsocks) Npairs) that is the conditional distribution of the

pair given the observation X = 11
Hence accepted values distributed from

7T(nsock:;) npairs) X P{X = 11|(nsock5) npairs)} = T[(nSOCkS) TLpairs‘x = 11)

The Bayesian Perspective

In the Bayesian paradigm, the information brought by the data x,
realization of
X~ f(X|9),

The Bayesian Perspective

In the Bayesian paradigm, the information brought by the data x,
realization of
X~ f(X|9),

is combined with specified by prior distribution
with density
7i(8)

Posterior distribution

Information summary contained in a probability distribution,
71(0]x), called the posterior distribution

Posterior distribution

Information summary contained in a probability distribution,
71(0]x), called the posterior distribution
Derived from the joint distribution f(x|0)7t(6), according to

(o) = FOBI(O)
mO) = THxe)m(0) a8’

[Bayes Theorem]

Posterior distribution

Information summary contained in a probability distribution,
71(0]x), called the posterior distribution
Derived from the joint distribution f(x|0)7t(6), according to

(o) = FOBI(O)
& X)*jf(xw)w(e)de’

[Bayes Theorem]
where

Z(x) = Jf(xle)n(e)de

is the marginal density of X also called the
[Gelman & al., 2020]

A typology of Bayes computational problems

(i). missing variable models

f(x°16) = Jf*(x°bs,x*|6) dx*

A typology of Bayes computational problems

(i). missing variable models
f(x°16) = Jf*(x°bs,x*|6) dx*
(ii). use of complex parameter spaces, as for instance in

constrained parameter sets like those resulting from imposing
stationarity constraints in dynamic models;

A typology of Bayes computational problems

(i). missing variable models

f(x°16) = Jf*(x°bs,x*|6) dx*

(ii). use of complex parameter spaces, as for instance in
constrained parameter sets like those resulting from imposing
stationarity constraints in dynamic models;

(iii). use of a complex sampling model with an intractable
likelihood, as for instance in some graphical models;

A typology of Bayes computational problems

(i). missing variable models

f(x°16) = Jf*(x°bs,x*|6) dx*

(ii). use of complex parameter spaces, as for instance in
constrained parameter sets like those resulting from imposing
stationarity constraints in dynamic models;

(iii). use of a complex sampling model with an intractable
likelihood, as for instance in some graphical models;

(iv). use of a huge dataset;

A typology of Bayes computational problems

(i). missing variable models

f(x°16) = Jf*(x°bs,x*|6) dx*

(ii). use of complex parameter spaces, as for instance in
constrained parameter sets like those resulting from imposing
stationarity constraints in dynamic models;

(iii). use of a complex sampling model with an intractable
likelihood, as for instance in some graphical models;

(iv). use of a huge dataset;

(v). use of a complex prior distribution (which may be the
posterior distribution associated with an earlier sample);

(vi). use of a complex inferential procedure as for instance, Bayes
factors

B () = P(9€@0|X)/7T(6€@0)
T T peco |x)/ ne e
[Robert, 2001]

Random variable generation

2 Random variable generation
Uniform generators
Interlude #2: Fibonacci generators
Beyond Uniform distributions
Transformation methods
Accept-Reject Methods
Interlude #3: Log-concave densities
Ratio of Uniforms

Random variable generation

Rely on the possibility of producing (computer-wise) an
endless flow of random variables (usually iid) from well-known
distributions

Random variable generation

Rely on the possibility of producing (computer-wise) an
endless flow of random variables (usually iid) from well-known
distributions

Given a uniform random number generator, illustration of
methods that produce random variables from both standard
and nonstandard distributions

Pseudo-random generator

Pivotal element/building block of simulation: always requires
availability of uniform % (0, 1) random variables

[© MMP World]

Pseudo-random generator

Pivotal element/building block of simulation: always requires
availability of uniform % (0, 1) random variables

[R runif (10)]

Pseudo-random generator

Pivotal element/building block of simulation: always requires
availability of uniform %/ (0,1) random variables

Definition (Pseudo-random generator)

A pseudo-random generator is a function f from 10, 1]
to 0, 1[such that, for any starting value uy and any n, the
sequence

{'LL(), f(LL()), f(f(LLO))) DR fn(u())}
behaves like an iid % (0, 1) sequence

Pseudo-random generator

Pivotal element/building block of simulation: always requires
availability of uniform %/ (0, 1) random variables

00 02 04 06 08

10 steps (u¢, ugy 1) of a uniform generator

Philosophical foray

While avoiding randomness, the deterministic sequence
(uo, ur = fug)y ...y un = fun_1))

must resemble a random sequence!

Philosophical foray

While avoiding randomness, the deterministic sequence

(uo, w1 = f(uo)y ..., un = f(un1))

must resemble a random sequence!

Debate on whether or not true
randomness does exist (Laplace's
demon versus Schroedinger’s
cat), in which case pseudo
random generators are not
random (von Neuman's state of
sin)

Philosophical foray

While avoiding randomness, the deterministic sequence
(u—O)u1 = f(uO)) ceoyUn = f(unf1))
must resemble a random sequence!

Debate on whether or not true
randomness does exist (Laplace's
demon versus Schroedinger’s
cat), in which case pseudo)
random generators are not —

\‘5 B .

random (von Neuman'’s state of
sin)

e
2 J)
o N

\"_..«’.5./ _

Philosophical foray

While avoiding randomness, the deterministic sequence

(uo, w1 = f(uo)y ..., un = f(un1))

must resemble a random sequence!

Debate on whether or not true
randomness does exist (Laplace's
demon versus Schroedinger’s
cat), in which case pseudo
random generators are not
random (von Neuman's state of
sin)

True random generators

Intel circuit producing “truly random” numbers:
There is no reason physical generators should be
“more” random than congruential (deterministic)
pseudo-random generators, as those are valid
generators, i.e. their distribution is exactly known
(e.g., uniform) and, in the case of parallel
generations, completely independent

True random generators

Intel generator satisfies all benchmarks of
“randomness” maintained by NIST:

Skepticism about physical devices, when compared
with mathematical functions, because of (a)
non-reproducibility and (b) instability of the device,
which means that proven uniformity at time t does
not induce uniformity at time t + 1

Desiderata and limitations

Production of a deterministic sequence of values in [0, 1] which
imitates a sequence of iid uniform random variables U y;.

Desiderata and limitations

Production of a deterministic sequence of values in [0, 1] which
imitates a sequence of iid uniform random variables U y;.

Can't use the physical imitation of a “random draw"” [no
guarantee of uniformity, no reproducibility]

Desiderata and limitations

Production of a deterministic sequence of values in [0, 1] which
imitates a sequence of iid uniform random variables U y;.
Can't use the physical imitation of a “random draw"” [no
guarantee of uniformity, no reproducibility]

sequence in the sense: Having generated
(X1,-++,Xn), knowledge of X, [or of (Xi,---,Xy)] imparts
no discernible knowledge of the value of X;,.1.

Desiderata and limitations

Production of a deterministic sequence of values in [0, 1] which
imitates a sequence of iid uniform random variables U y;.
Can't use the physical imitation of a “random draw"” [no
guarantee of uniformity, no reproducibility]
sequence in the sense: Having generated

(X1,-++,Xn), knowledge of X, [or of (Xi,---,Xy)] imparts
no discernible knowledge of the value of X;,.1.

. Given the initial value X, sample (Xq, -+, Xy)
always the same

Desiderata and limitations

Production of a deterministic sequence of values in [0, 1] which
imitates a sequence of iid uniform random variables U y;.

Can't use the physical imitation of a “random draw"” [no
guarantee of uniformity, no reproducibility]

sequence in the sense: Having generated
(X1,-++,Xn), knowledge of X, [or of (Xi,---,Xy)] imparts
no discernible knowledge of the value of X;,.1.

. Given the initial value X, sample (Xq, -+, Xy)
always the same

Validity of a random number generator based on a single
sample Xj,---, Xy, when n tends to +00, not on replications

(Xq1y -5 Xan)y (X1, s Xondy o oo (Xity -+, Xien)

where n fixed and k tends to infinity.

Uniform pseudo-random generator

Algorithm starting from an initial value 0 <1y <1 and a
transformation D, which produces a sequence

(w) = (D*(uo))

in [0,1].

Uniform pseudo-random generator

Algorithm starting from an initial value 0 <1y <1 and a
transformation D, which produces a sequence

(w) = (D*(uo))

in [0,1].
For all n,
(LL], to)un)
reproduces the behavior of an (V1,-+-, V) when

compared through usual statistical tests (e.g., Kolmogorov)

Uniform pseudo-random generator (2)

Validity means the sequence Uy, ---, U, leads to accept the
hypothesis

H:Up,-- U, areiid %

Uniform pseudo-random generator (2)

Validity means the sequence Uy, ---, U, leads to accept the
hypothesis

H:Up,-- U, areiid %

The set of tests used is generally of some consequence

Kolmogorov—-Smirnov and other nonparametric tests
Time series methods, for correlation between U; and
(U1, Uik)

Marsaglia's battery of tests called Die Hard (!)

[Diehard, Marsaglia, 1995, 2006]

Usual generators

In R and S-plus, procedure runif ()

The Uniform Distribution

Description:
‘runif’ generates random deviates.

Example:
u <- runif(20)

‘.Random.seed’ is an integer vector, containing
the random number generator state for random
number generation in R. It can be saved and
restored, but should not be altered by users.

0.0 0.2 04 06 08 1.0

0.5 1.0 15

0.0

500

520

540

uniform sample

560

580

600

0.0

0.2

0.4

0.6

0.8

1.0

Usual generators (2)

In C, procedure rand() or random()

SYNOPSIS

#include <stdlib.h>

long int random(void);
DESCRIPTION
The random() function uses a non-linear additive
feedback random number generator employing a
default table of size 31 long integers to return
successive pseudo-random numbers in the range
from O to RAND_MAX. The period of this random
generator is very large, approximately
16% ((2%*31)-1) .
RETURN VALUE
random() returns a value between 0 and RAND MAX.

Usual generators (3)

In Matlab and Octave, procedure rand ()

RAND Uniformly distributed pseudorandom numbers.
R = RAND(M,N) returns an M-by-N matrix containing
pseudorandom values drawn from the standard uniform
distribution on the open interval(0,1).

The sequence of numbers produced by RAND is
determined by the internal state of the uniform
pseudorandom number generator that underlies RAND,
RANDI, and RANDN.

Usual generators (4)

In python, procedure random.uniform()

random.uniform(a, b)

Return a random floating-point number N
such that a <= N <=b for a <= b and
b <= N <= a for b < a.

The end-point value b may or may not be
included in the range depending on
floating-point rounding in the expression
a + (b-a) * random().

The R tor options

Options for R runif ()

Details
The currently available RNG kinds are given below. kind is partially ma

"Wichmann-Hill"
The seed, .Random.seed[-1] == r[1:3] is an integer vector of length 3,

"Marsaglia-Multicarry":
A multiply-with-carry RNG is used, as recommended by George Marsaglia i

It exhibits 40 clear failures in L’Ecuyer’s TestUO1 Crush suite. Combin

The seed is two integers (all values allowed).

The R tor options

Options for R runif ()

"Super-Duper":
Marsaglia’s famous Super-Duper from the 70’s. This is the original vers

We use the implementation by Reeds et al (1982{84).
The two seeds are the Tausworthe and congruence long integers, respecti
It exhibits 25 clear failures in the TestUO1 Crush suite (L’Ecuyer, 200

"Mersenne-Twister":
From Matsumoto and Nishimura (1998); code updated in 2002. A twisted GF

R uses its own initialization method due to B. D. Ripley and is not aff
It exhibits 2 clear failures in each of the TestUO1l Crush and the BigCr

"Knuth-TAOCP-2002":
A 32-bit integer GFSR using lagged Fibonacci sequences with subtraction

"Knuth-TAOCP" :

The R tor options

Options for R runif ()

normal.kind can be "Kinderman-Ramage", "Buggy Kinderman-Ramage" (not fo
sample.kind can be "Rounding" or "Rejection", or partial matches to the
set.seed uses a single integer argument to set as many seeds as are req

The use of kind = NULL, normal.kind = NULL or sample.kind = NULL in RNG

A simple uniform generator

The congruencial generator on {1,2,..., M}
f(x) = (ax 4+ b) mod (M)

has a period equal to M for proper choices of (a,b) and becomes
a generator on]0, 1] when dividing by M + 1

A simple uniform generator

The congruencial generator on {1,2,..., M}
f(x) = (ax + b) mod (M)

has a period equal to M for proper choices of (a,b) and becomes
a generator on]0, 1] when dividing by M + 1

Example

Take
f(x) = (69069069x + 12345) mod (232)

and produce

i.e.

A simple uniform generator

The congruencial generator on {1,2,..., M}
f(x) = (ax + b) mod (M)

has a period equal to M for proper choices of (a,b) and becomes
a generator on]0, 1[when dividing by M + 1

A simple uniform generator

The congruencial generator on {1,2,..., M}
f(x) = (ax + b) mod (M)

has a period equal to M for proper choices of (a,b) and becomes
a generator on]0, 1[when dividing by M + 1

Approximating 7

My daughter’s pseudo-code:

N=1000
=0
for I=1,N do

X=RDN(1), Y=RDN(1)
if X2 4+ Y2 < 1 then
"="n+1
end if
end for
return 4*7/N

Approximating 7

pi=3.2
My daughter's pseudo-code: /_\
N=1000
=0
for I=1,N do

X=RDN(1), Y=RDN(1)
if X2 4+ Y2 < 1 then
n=n+1
end if
end for
return 4*7/N

100 simulations

Approximating 7

pi=3.108

My daughter's pseudo-code: e ™~
N=1000 / \
=0 /
for I=1,N do (

X=RDN(1), Y=RDN(1) \
if X2 4+ Y2 < 1 then \
n=n+1 " V4
end if \\.‘/”
end for
return 4*7/N

1000 simulations

Approximating 7

pi=3.136

My daughter’s pseudo-code:

N=1000
AR=0
for I=1,N do

X=RDN(1), Y=RDN(1)
if X2 4+ Y2 < 1 then
n=n+1
end if
end for
return 4*7/N

10,000 simulations

Approximating 7

pi=3.142868

My daughter’s pseudo-code:

N=1000
=0
for I=1,N do

X=RDN(1), Y=RDN(1)
if X2 4+ Y2 <1 then
f"="n+1
end if
end for
return 4*7/N

10° simulations

Interlude #2: Fibonacci generators

2 Random variable generation

Interlude #2: Fibonacci generators

Interlude #2: Fibonacci generators

Recall that Fibonacci sequence defined by recurrence
Sn = Sn—1 + Sn—Z
that can be generalised into

Sn =81 j*Snk (mod m),0<j<k

Interlude #2: Fibonacci generators

Recall that Fibonacci sequence defined by recurrence
Sn=Sn_1+ S22
that can be generalised into
Sn =81 j*Snk (mod m),0<j<k

where
m usually a power of 2 (m = 2M),

* denotes a general binary operation (addition, subtraction,
multiplication, XOR).

Interlude #2: Fibonacci generators

Maximum period of Fibonacci generators depends on choice of *.
For addition or subtraction, max = (2k — 1) x 2M~!
For multiplication, max = (2k — 1) x 2M~3
For bitwise XOR, max = 2!

Examples of valid* (j, k)'s:

(24,55), (38, 89), (37,100), (30, 127), (83, 258), (107, 378), (273, 607)

(576,3217), (4187, 9689), (7083, 19937), (9739, 23209)

*Polynomial must be primitive over the integers mod 2.

Interlude #2: Fibonacci generators

Maximum period of Fibonacci generators depends on choice of *.
For addition or subtraction, max = (2k — 1) x 2M~!
For multiplication, max = (2k — 1) x 2M~3
For bitwise XOR, max = 2!

Examples of valid* (j, k)'s:

(24,55), (38, 89), (37,100), (30, 127), (83, 258), (107, 378), (273, 607)

(576,3217), (4187, 9689), (7083, 19937), (9739, 23209)

Example of the (default) Mersenne twister with period 27737 — 1
[Matsumoto & Nishimura, 1997]

*Polynomial must be primitive over the integers mod 2.

Beyond Uniform distributions

2 Random variable generation

Beyond Uniform distributions

Why is it complicated to sample from the posterior

distribution if we already KNOW it?

a—
UESTIONS ~ TAGS ~ USERS BADGES UNANSWERED

&= CrossValidated

Why is it necessary to sample from the posterior distribution if we already KNOW the posterior distribution?

A My understanding is that when using a Bayesian approach to estimate parameter values: ed 19 days ago
3 « The posterior distribution is the combination of the prior distribution and the likelihood 198 times
distribution. 45 dare hgo

* We simulate this by generating a sample from the posterior distribution (e.g., using a
Metropolis-Hasting algorithm to generate values, and accept them if they are above a certain

threshold of probability to belong to the posterior distribution).
« Once we have generated this sample, we use it to approximate the posterior distribution, and :

What are the Most Dislikec
things like its mean. -
Podcast #120 — Halloween

But, | feel like | must be misunderstanding something. It sounds like we have a posterior
with Anil Slash

distribution and then sample from it, and then use that sample as an approximation of the posterior
distribution. But if we have the posterior distribution to begin with why do we need to sample from it

What to do about “wrony

to approximate it?

[Cross Validated, Stack Exchange]

Beyond Uniform generators

Generation of any sequence of random variables can be

formally implemented through a uniform generator
Distributions with explicit F~ (for instance, exponential,
and Weibull distributions), use the probability integral
transform

Beyond Uniform generators

Generation of any sequence of random variables can be

formally implemented through a uniform generator
Distributions with explicit F~ (for instance, exponential,
and Weibull distributions), use the probability integral
transform
Case specific methods rely on unique properties of the
distribution (e.g., Normal distribution, Poisson
distribution)

Beyond Uniform generators

Generation of any sequence of random variables can be
formally implemented through a uniform generator

Distributions with explicit F~ (for instance, exponential,
and Weibull distributions), use the probability integral
transform

Case specific methods rely on unique properties of the
distribution (e.g., Normal distribution, Poisson
distribution)

Generic methods (for instance, accept-reject and
ratio-of-uniform)

Beyond Uniform generators

Generation of any sequence of random variables can be
formally implemented through a uniform generator
Distributions with explicit F~ (for instance, exponential,
and Weibull distributions), use the probability integral
transform
Case specific methods rely on unique properties of the
distribution (e.g., Normal distribution, Poisson
distribution)
Generic methods (for instance, accept-reject and
ratio-of-uniform)
Simulation of standard distributions solved quite efficiently by
many numerical and statistical programming packages.

Distributions that differ from uniform distributions

Problem

Given probability distribution with
density f, how can we produce
randomness according to 7!

)

Distributions that differ from uniform distributions

Problem

Given probability distribution with
density f, how can we produce
randomness according to 7!

f

implemented algorithms in a

resident software only available for
distributions

new distributions may require fast

resolution

no approximation allowed Example of an arbitrary density

Simulation 101: The inverse transform method

For a function F on R, the generalized inverse of F, F~, is defined
by
F~(u) =inf {x; F(x) > u}.

Simulation 101: The inverse transform method

For a function F on R, the generalized inverse of F, F~, is defined
by
F~(u) =inf {x; F(x) > u}.
Definition (Probability Integral Transform)
If U~ Up 17, then the random variable F~(U) is distributed from F.

The inverse transform method (2)

To generate a random variable X ~ F, simply generate

U~ %o,

The inverse transform method (2)

To generate a random variable X ~ F, simply generate
U~ %o
and then make the transform

x = F (u)

Transformation methods

2 Random variable generation

Transformation methods

Transformation methods

Case where a distribution F is linked in a simple way to another
distribution easy to simulate/already available

Example (Exponential variables)

If U ~ U 1), the random variable
X =—logU/A
has distribution

P(X<x) = P(—loglU < Ax)
= PU>e™) =1—e,

Exponential distribution &xp(A).

Further standard distributions

Other random variables that can be generated starting from an
exponential include

Y
Y=-2 Z log(U;) ~ X3y (chi-square)
= —— Zlog ~%a(a,P) (Gamma)

~ ABe(a,b) (Beta)

Points to note

Transformation must be immediate/free to use

There are more efficient algorithms for Gamma and Beta
random variables

Cannot generate Gamma random variables with a non-integer
shape parameter

For instance, cannot get a x% variable, which would get us a

N(0,1) variable.

Box-Muller Normal Generator

Example (Normal variables)

If r,0 polar coordinates of (X;,X3), then,

=X +X;~x3=¢€01/2) and 0~ %I[0,27]

Box-Muller Normal Generator

Example (Normal variables)

If r,0 polar coordinates of (X;,X3), then,
=X +X;~x3=¢€01/2) and 0~ %I[0,27]

Consequence: If Uy, Uy iid U gy,

X7 = 1/—2log(Uy) cos(27tl;)
Xy = 1/—2log(Uy) sin(27tU;)

Box-Muller Algorithm (2)

1. Generate Uy, Uy iid U 1y ;

2. Define
X7 = 1/—2log(u) cos(2muy)

Xy = —2log(wy) sin(27uy) ;

3. Take x7 and x; as two independent draws from N (0, 1).

Box-Muller Algorithm (3)

Unlike algorithms based on the CLT,
this algorithm is exact

Get two normals for the budget of
two uniforms

Drawback (in speed)
in calculating log, cos and sin.

More transforms

Example (Poisson generation)

Poisson—exponential connection:
If N~7P(A) and X; ~ &xp(A), 1 € N,

PA(N =k) =
PaXy +- -+ X ST < Xy 4+ + X)) -

[Poisson process|

More Poisson

A Poisson can be simulated by generating &xp(1) till their
sum exceeds 1.

This method is simple, but only practical for smal values of A
as...

...on average, the number of exponential variables required is
A

Other approaches are more suitable for large A's.

Atkinson’s Poisson (1979)

To generate N ~P(A):

1. Define
B=m/V3\, a=AB and k=logc—A—logp;
2. Generate U; ~ %y and calculate
x ={o —log{(1 —wi)/ur}}/B

until x > —0.5 ;
3. Define N =[x+ 0.5] and generate U; ~ % 1;
4. Accept N if

& — Bx + log (up/{1 + exp(ox — px)}) < k + NlogA —log N!

Negative extension

A generator of Poisson random variables can produce
Negative Binomial random variables since,

Y~Gan,(1-p)/p) Xy~7Ply)

implies
X~ Neg(nap)

Mixture representation

The representation of the Negative Binomial is a particular
case of a mixture distribution

The principle of a mixture representation is to represent a
density f as the marginal of another distribution, for example

fx) =) pifilx),
iew

If the component distributions f;(x) can be easily generated,
X can be obtained by first choosing f; with probability p; and
then generating an observation from fj.

Partitioned sampling

Special case of mixture sampling when
fi(x) = f(x) Ia, (x)/J f(x) dx
Ai

and
Pi= PI’(X S Al)

for a partition (A;); and

Accept-Reject Methods

2 Random variable generation

Accept-Reject Methods

Accept-Reject algorithm

Many distributions from which it is difficult, or even
impossible, to directly simulate.

Another class of methods that only require us to know the
functional form of the density f of interest only up to a
multiplicative constant.

The key to this method is to use a simpler (simulation-wise)
density g, the instrumental density, from which the simulation
from the target density f is actually done.

Fundamental theorem of simulation

Lemma

Simulating
X ~ f(x)

equivalent to simulating

X, U) ~U{(x,u) : 0 <u < f(x)}

The Accept-Reject algorithm

Given a density of interest f, find a density g and a constant M
such that
f(x) < Mg(x)

on the support of f.

The Accept-Reject algorithm

Given a density of interest f, find a density g and a constant M

such that
f(x) < Mg(x)

on the support of f.

Accept-Reject Algorithm

1. Generate X~ g, U~Ujp 1y ;

2. Accept Y =X if U < f(X)/Mg(X) ;

3. Return to 1. otherwise.

Validation of the Accept-Reject method

Warranty:

This algorithm produces a variable Y distributed according to f

Two interesting properties

First, it provides a generic method to simulate from any
density f that is known up to a multiplicative factor

Property particularly important in Bayesian calculations where
the posterior distribution

(0]x) o 7t(0) F(x|8) .

is specified up to a

Two interesting properties

First, it provides a generic method to simulate from any
density f that is known up to a multiplicative factor

Property particularly important in Bayesian calculations where
the posterior distribution

(0]x) o 7t(0) F(x|8) .

is specified up to a

Second, the probability of acceptance in the algorithm is
, €.g., expected number of trials until a variable is

accepted is M (including)

More interesting properties

In cases f and g both probability densities, the constant M is
necessarily larger that 1.

More interesting properties

In cases f and g both probability densities, the constant M is
necessarily larger that 1.

The size of M, and thus the efficiency of the algorithm, are
functions of how closely g can imitate f, especially in the tails

More interesting properties

In cases f and g both probability densities, the constant M is
necessarily larger that 1.

The size of M, and thus the efficiency of the algorithm, are
functions of how closely g can imitate f, especially in the tails
For f/g to remain bounded, necessary for g to have tails
thicker than those of f.

It is e.g. impossible to use the A-R algorithm to simulate a
Cauchy distribution f using a Normal distribution g, however
the reverse works quite well.

llustration (1)

Example (Normal from a Cauchy)

Take :
f(X) = m eXp(—XZ/Z)
and
ol 1
I =2 +x2’

densities of the Normal and Cauchy distributions.

llustration (1)

Example (Normal from a Cauchy)

Take :
f(X) = \/277‘[eXp(—XZ/Z)
and
ol 1
I =2 +x2’

densities of the Normal and Cauchy distributions.

Then
flx) _ Zt(1 1x2) e /2 < A 1.52
g(x) 2 Ve

attained at x = +£1.

llustration (1)

Example (Normal from a Cauchy (2))

So probability of acceptance
1/1.52 = 0.66,

and, on the average, one out of every three simulated Cauchy
variables is rejected.

lllustration (2)

Example (Normal/Double Exponential)

Generate a .4 (0, 1) by using a double-exponential distribution
with density
g(x|a) = (x/2) exp(—«x])
Then
f(X) < 2 0(71 eiaZ/z

gxla) — V7

and minimum of this bound (in «) attained for

o =1

lllustration (2)

Example (Normal/Double Exponential (2))

Probability of acceptance

\/Tt/2e = .76

To produce one Normal random variable requires on the average
1/.76 ~ 1.3 uniform variables.

Example (Gamma generation)

Illustrates a real advantage of the Accept-Reject algorithm
The Gamma distribution Ga(c,) represented as the sum of «
exponential random variables, only if « is an integer

Example (Gamma generation (2))

Can use the Accept-Reject algorithm with instrumental distribution
Ga(a,b), with a =[a, o >0.

(Without loss of generality, =1.)

Example (Gamma generation (2))
Can use the Accept-Reject algorithm with instrumental distribution
Ga(a,b), with a =[a, o >0.

(Without loss of generality, =1.)
Up to a normalizing constant,

f/gy = b x*® exp{—(1 —b)x} < b~° <m))

for b < 1.
The maximum is attained at b = a/«.

Cheng and Feast’s Gamma generator

Gamma %a(«, 1), o« > 1 distribution

1. Defineci=a—1,c; = (x—(1/6a))/cq, c3 =2/cq,
cs=1+c3 and c5 =1/
2. Repeat
generate Uy, U,
take Uy = Uy + c5(1 — 1.86U4) if « > 2.5
until 0 < U; < 1.
3. Set W = coU,/U;.
4. 1f c3Up + W4+ W1 <cyorezlogly —logW+W <1,
take ciW;
otherwise, repeat.

Truncated Normal simulation

Example (Truncated Normal distributions)

Constraint x > p produces density proportional to
(o2 2
e~ (x—w?/20 Lo

for a bound p large compared with p

Truncated Normal simulation

Example (Truncated Normal distributions)

Constraint x > p produces density proportional to

(o2 2
e~ (x—w?/20 Lo
for a bound p large compared with p
There exists alternatives far superior to the naive method of
generating a N (i, 02) until exceeding W, which requires an average
number of

1/0((u—p)/o)

simulations from N (u, 02) for a single acceptance.

Truncated Normal simulation

Example (Truncated Normal distributions (2))

Instrumental distribution: translated exponential distribution,
& (o, 1), with density

Truncated Normal simulation

Example (Truncated Normal distributions (2))

Instrumental distribution: translated exponential distribution,
& (o, 1), with density

gu(z) = oe Mz 1) [

The ratio f/gy is bounded by

1/« exp(a?/2 — o) if & >,
f/g(X S 2 - .7
1/ exp(—p</2) otherwise.

Interlude #3: Log-concave densities

2 Random variable generation

Interlude #3: Log-concave densities

Interlude #3: Log-concave densities

Densities f whose logarithm is concave, for instance Bayesian
posterior distributions such that

log 7(0]x) = log 7(0) + log f(x|0) + ¢

concave

Interlude #3: Log-concave densities

Take
Gn={x;,1=0,1,...,n+ 1} C supp(f)
such that h(x;) = log f(xi) known up to the same constant.

By concavity of h, line L1 through
(x4, h(xi)) and (Xit1, h(xi+1))
below h in [xi,xi1] and

above this graph outside this interval

Interlude #3: Log-concave densities

For x € [xi,xi11], if

hn(x) = min{Li_1i(x), Lit1i42(x)} and hy(x) =Ly (x),

the envelopes are 7
h, (%) < h(x) < hn(x)

uniformly on the support of f, with

—oo and hy(x) = min(Lo; (x), Lyns1(x))

5
z
I

Interlude #3: Log-concave densities

Therefore, if
fo(x) = exphy (x) and fr,(x) = exp hn(x)

then
fn(x) < f(X) < ﬁl(x) = Wn gn(x) y

where @, normalizing constant of f

Interlude #3: ARS Algorithm

1. Initialize n and G,.
2. Generate X ~ gn(x), U~ U).

3. If U < £ (X)/@n gn(X), accept X;
otherwise, if U < f(X)/@n gn(X), accept X

Interlude #3: Log-concave densities

Example (Northern Pintail ducks)

Ducks captured at time i with both probability p; and
size N of the population unknown.
Dataset

(TL],.-.,Tl]]) = (32>20)8)5)1)2)0)2)1>1)0)

Number of recoveries over the years 1957-1968 of 1612
Northern Pintail ducks banded in 1956

Interlude #3: Log-concave densities

Example (Northern Pintail ducks (2))

Corresponding conditional likelihood

I
L(TL],...,TLI|N,p],...,P1) X H P?‘U _pi)N_m)
i=1

where I number of captures, n; number of captured animals during
the ith capture, and 1 is the total number of different captured
animals.

Interlude #3: Log-concave densities

Example (Northern Pintail ducks (3))
If

and

[Normal logistic]

Interlude #3: Log-concave densities

Example (Northern Pintail ducks (4))

(oo Ny ooymr) o N AT T gegon
&y, N[y, ...,MNg X (N—1)! N! 11

I
1 2
I exp {ocmi — o (o — i) }
o 20

Interlude #3: Log-concave densities

Example (Northern Pintail ducks (5))

For the conditional posterior distribution

N e o —)2 T4ex)N
7(oGIN, Ly ..y) o exp g oGy 202(0(1 Hi) (1+e™)7,
the ARS algorithm can be implemented since

1 A
oy — 5 (o — i) — N log(1 + €%

is concave in «;.

Interlude #3: Log-concave densities

Posterior distributions of capture log-odds ratios for the
years 1957-1965.

1957 o 1058 o 1050

1960 N 1061 N 1062

1963 o 1964 - 1965

sssssssssssssssssssssssssss

Interlude #3: Log-concave densities

1960

0.6
I
=__
T
1
—

0.4

0.2

0.0

T T T T 1
-8 -7 -6 -5 -4

True distribution versus histogram of simulated sample

Slice sampler

[Damien & al., 1999; Neal, 2003]

Slice sampler

If direct uniform simulation on
Sr ={(u,x); 0 < u < f(x)}

is too complex [because of unavailable hat/instrumental
distribution] use instead a on S
[Damien & al., 1999; Neal, 2003]

Slice sampler

can be achieved by making random jumps in vertical then
horizontal directions, accounting for the boundaries

0<u<Af(x),ie UO,T1)
f(x) >, ie. x ~ sy

[Damien & al., 1999; Neal, 2003]

Slice sampler

Slice sampler algorithm
Fort=1,...,T
when at (x(V; w) simulate
1 g
1. w(t+) ~ 7/[0 f(x ()] H

)

2. xW ~ Uiy, where

)

(t+1) . (t+1)
S ={y; fly) > w 1 : e e

Ratio of Uniforms

2 Random variable generation

Ratio of Uniforms

Ratio of uniforms principle

Consider the set A of (u,v)'s in Rt x X such that
0 <u? < flv/u)

Then a uniform distribution on A induces the distribution with
density proportional to f on V/U.
[Kinderman and Monahan's (1977)]

Ratio of uniforms validation

Consider the change of variables from (u,v) to (w,w =v/u) with
Jacobian u, then (u,w) has the density

Wi)12y (W)

Integrating out u leads to

f(w) /2
J wdu = f(w)"2*% = f(w)
0

as proportional to the density of V/U

Ratio of uniforms implementation

Simulating a uniform distribution on A means identifying the
region within a simple box %

Ratio of uniforms implementation

Simulating a uniform distribution on A means identifying the
region within a simple box B
Boundaries of A given by

AP = {(u(x) = f(x) "3, v(x) = xf(x)"?); x € X}

15

1.0

0.0

Ratio of uniforms implementation

Simulating a uniform distribution on A means identifying the
region within a simple box B
Boundaries of A given by

AP = {(u(x) = f(x) "3, v(x) = xf(x)"?); x € X}

Ratio of uniforms implementation

There exists a compact box 98 containing A iff
0<f(x)<f O0<xf(x)2<f

Applications to standard distributions like Student’s t
[Devroye, 1986, Section 3.7]

Ratio of uniforms implementation

There exists a compact box 98 containing A iff
0<f(x)<f O0<xf(x)2<f

Applications to standard distributions like Student’s t
[Devroye, 1986, Section 3.7]

Chen and Feast (1979) gamma generator (R rgamma) is
a ratio of uniforms algorithm

Ratio of uniforms generalisation

Principle that can be generalised to a monotone transform of f,
h(f), and the set

H ={w,v); 0 <u<h(f(v/g(u)))}

which still produces a distribution with density proportional to f
when
g(x) =d6/ax(x) G(x) =h7'(x)

Ratio of uniforms generalisation

choice of transform f most adequate for a given f
slice sampler deduced from this construct
case of an unbounded density f

Ratio of uniforms generalisation (2)

In dimension d, when generating a Uniform random variable over

1/(rd+1)
C(r):{(u,v1,...,vd):0<u§{f(:},...,vd)} } r>0

uT

then
(VAL . va /) ~ () j f(y(dy

[Wakefield & al., 1991; Northop & al., 2016]

Example: multivariate Normal distribution

Standard d-dimensional Normal distribution

d
f(x) o< exp (—; Z xf)

maximal probability of acceptance occurs when r =1/2

(7re)4/2

pa(d3]/2) = Zd(] + d/z)]+d/2

which quickly decreases in d
[rust R package, P. Northop, 2024]

Ratio of uniforms generalisation (2)

P2

P2

02

-0.2

0.05

-0.05

mode relocation
pa= 0.134

Py

Box-Cox and mode relocation
pa= 0.491

1 @

P2

P2

mode relocation and rotation
pa= 0.429

02

-02 00

Box-Cox, mode relocation and rotation
532

(@

e
T

Monte Carlo integration

3 Monte Carlo integration
Introduction
Monte Carlo integration
Importance Sampling
Interlude #4: Harmonic mean estimator
Optimal IS
Interlude #5: IS suffers from curse of dimensionality
Acceleration methods
Interlude #6: Rao-Blackwellisation

Quick reminder

Two major classes of numerical problems that arise in statistical
inference

- generally associated with the likelihood
approach

Quick reminder

Two major classes of numerical problems that arise in statistical
inference

- generally associated with the likelihood
approach

- generally associated with the Bayesian approach

Hlustration

Example (Bayesian decision theory)

Bayes estimators are not always posterior expectations, but rather
solutions of the minimization problem

IIléiH J L(6,58) 7t(0) f(x|6) do .
(C)

Proper loss:
For L(0,8) = (6 — 8)%, the Bayes estimator is the posterior mean

Hlustration

Example (Bayesian decision theory)

Bayes estimators are not always posterior expectations, but rather
solutions of the minimization problem

IIléiH J L(6,58) 7t(0) f(x|6) do .
(C)

Proper loss:

For L(0,8) = (6 — 8)%, the Bayes estimator is the posterior mean
Absolute error loss:

For L(0,08) = |0 — 3|, the Bayes estimator is the posterior median

Hlustration

Example (Bayesian decision theory)

Bayes estimators are not always posterior expectations, but rather
solutions of the minimization problem

l’IléiH J L(6,58) 7t(0) f(x|6) do .
(C)

Proper loss:

For L(0,8) = (6 — 8)%, the Bayes estimator is the posterior mean
Absolute error loss:

For L(0,08) = |0 — 3|, the Bayes estimator is the posterior median
With no loss function

use the maximum a posteriori (MAP) estimator

arg mguxﬂ(elx)n(e)

Monte Carlo integration

3 Monte Carlo integration
Introduction
Monte Carlo integration
Importance Sampling
Interlude #4: Harmonic mean estimator
Optimal IS
Interlude #5: IS suffers from curse of dimensionality
Acceleration methods
Interlude #6: Rao-Blackwellisation

Monte Carlo integration

Theme:
Generic problem of evaluating the integral

where 2 is uni- or multidimensional, f is a closed form, partly
closed form, or implicit density, and h is a function

Monte Carlo integration (2)

First use a sample (Xj,...,Xn) from the density f to approximate
the integral J by the empirical average

-l m
T g

Monte Carlo integration (2)

First use a sample (Xj,...,Xn) from the density f to approximate
the integral J by the empirical average

-l m
T g

which converges B
hm — E¢[h(X)]

by the Strong Law of Large Numbers

Monte Carlo precision

Estimate the variance with

and for m large,

hm — E¢[h(X)]
P

Note: This can lead to the construction of a convergence test and
of confidence bounds on the approximation of E¢[h(X)].

~ A (0,1).

Hlustration

Example (Cauchy prior/normal sample)

For estimating a normal mean, a robust prior is a Cauchy prior
X~ A4(06,1), 06~C(0,1).

Under squared error loss, posterior mean

[0 et

57(x) = L=o2 1+ 02

L)o 1402

Hlustration

Example (Cauchy prior/normal sample (2))

Form of 0" suggests simulating iid variables
91)"')emNJV(X)1)

and calculating

m m
e (x):Z & / E ! .
" — 1402/ 1467

i=1 i

1
The Law of Large Numbers implies

3T (x) — §™(x) as m — oo.

106

104

T
o 200 400 600 800 1000

iterations

Range of estimators 57, for 100 runs and x =10

Importance Sampling

3 Monte Carlo integration
Introduction
Monte Carlo integration
Importance Sampling
Interlude #4: Harmonic mean estimator
Optimal IS
Interlude #5: IS suffers from curse of dimensionality
Acceleration methods
Interlude #6: Rao-Blackwellisation

Importance sampling

Simulation from f (the true density) is not necessarily

Importance sampling

Simulation from f (the true density) is not necessarily

Alternative to direct sampling from f is ,
based on the alternative representation

E(h(X)] =L [h(x) T gx) ax .

g(x)

which allows us to use distributions than f

Importance sampling algorithm

Evaluation of

by
1. Generate a sample Xj,..., X, from a distribution g

2. Use the approximation

I fX5) 1y,
m = 9(X))

Same thing as before!!!

Convergence of the estimator

m f(Xj) |
X;) h(X;) — J} h(x) f(x) dx

1
m

a}

j=1

Same thing as before!!!

Convergence of the estimator

m f(X)
g(X]j) h(X;) — J} h(x) f(x) dx

1
m
=1

converges for any choice of the distribution g
[as long as supp(g) D supp(f)]

Important details

Instrumental distribution g chosen from distributions easy to
simulate

The same sample (generated from g) can be used repeatedly,
not only for different functions h, but also for different
densities f

Even dependent proposals can be used, as seen later

Important choice

Although g can be any density, some choices are better than
others:

Finite variance only when

24y TX)T 2. PX)
Er |n (X)g(X)] ‘L W) gy X<

Important choice

Although g can be any density, some choices are better than
others:

Finite variance only when

f(X) 2. PX)

E [hZ(X)] :J h?(x) dx < oo .
' 9X¥)] "~ Jx 9(X)

Instrumental distributions with tails lighter than those of f

(that is, with sup f/g = 0o) not appropriate.

If supf/g = oo, the weights f(x;)/g(x;) vary widely, giving

too much importance to a few values x;.

Important choice

Although g can be any density, some choices are better than
others:

Finite variance only when

f(X) 2. PX)

E [hZ(X)] :J h?(x) dx < oo .
' 9X¥)] "~ Jx 9(X)

Instrumental distributions with tails lighter than those of f

(that is, with sup f/g = 0o) not appropriate.

If supf/g = oo, the weights f(x;)/g(x;) vary widely, giving

too much importance to a few values x;.

If supf/g =M < oo, the accept-reject algorithm can be used
as well to simulate f directly.

Hlustration

Example (Cauchy target)

Case of Cauchy distribution C(0, 1) when importance function is
Gaussian 4(0,1).
Ratio of the densities

very badly behaved: e.g.,
J p(x)*po(x)dx = co.

Poor performances of the associated importance sampling
estimator

T T T T T
o 2000 4000 6000 8000 10000

iterations

Range and average of 500 replications of IS estimate of
Elexp —X] over 10,000 iterations.

Interlude #4: Harmonic mean estimator

3 Monte Carlo integration
Introduction
Monte Carlo integration
Importance Sampling
Interlude #4: Harmonic mean estimator
Optimal IS
Interlude #5: IS suffers from curse of dimensionality
Acceleration methods
Interlude #6: Rao-Blackwellisation

Interlude #4: Harmonic mean estimator

Estimating

via [harmonic mean]| identity

7(0]x)
[0 L] _[_e® FOLON 1
7t9)L(6]x) n(O)L(Olx) 3(x) 3(x)

no matter what the proposal @(-) is.
[Gelfand & Dey, 1994; Bartolucci et al., 2006]

Interlude #4: Harmonic mean estimator

Estimating
3(x) = JH(O)L(O)L(OIX) do

via [harmonic mean]| identity

7(0]x)
[0 L] _[_e® FOLON 1
7t9)L(6]x) n(O)L(Olx) 3(x) 3(x)

no matter what the proposal @(-) is.
[Gelfand & Dey, 1994; Bartolucci et al., 2006]

Direct exploitation of the posterior simulation output

Interlude #4: Harmonic mean estimator

Original version with @(-) = 7(+)

t
—1/ t) o) ~ 7(0]x)

[Newton & Raftery, 1994]

Interlude #4: Harmonic mean estimator

Original version with @(-) = 7(+)

t
—1/ t) o) ~ 7(0]x)

[Newton & Raftery, 1994]

lllustration: Normal mean (Neal, 2008)

Take X|0 ~ N (6, 0%) and 0 ~ N(0, 03)
Define

harmonic.mean.marg.lik <- function (x, sO, s1, n)
{ post.prec <- 1/s0 + 1/s1
t <- rnorm(n, (x/s1)/post.prec,sqrt(1/post.prec))
1lik <- dnorm(x,t,sl)
1/mean(1/1ik)
}

lllustration: Normal mean (Neal, 2008)

Take X|0 ~ N (6, 0%) and 6 ~ N(0, 03)

> for (i in 1:5)
+ print(harmonic.mean.marg.lik(2,10,1,1e7))
[1] 0.08439447
[1] 0.0989342
[1] 0.0973829
[1] 0.08654892
[1] 0.09364961
> true.marg.lik(2,10,1)
[1] 0.03891791

Worst Monte Carlo Method Ever

Optimal importance function

The choice of g that minimizes the variance of the
importance sampling estimator is

[h(x)| f(x)

9"(x) = [(@) f(z) dz °

Optimal importance function

The choice of g that minimizes the variance of the
importance sampling estimator is
_ X))

[z h(z)| f(z) dz

g*(x)

Rather formal optimality result since optimal choice of g*(x)
requires the knowledge of J, the integral of interest!

Practical impact

2% h(X5) £(X5)/9(X5)
>N fX%5)/9(%)

where f and g are known up to constants.

Also converges to J by the Strong Law of Large Numbers.

Biased, but the bias is quite small

Practical impact

2% h(X5) £(X5)/9(X5)
>N fX%5)/9(%)

where f and g are known up to constants.

Also converges to J by the Strong Law of Large Numbers.

Biased, but the bias is quite small

In some settings beats the unbiased estimator in squared error
loss.

Using the ‘optimal’ solution does not always work:

Z] 1 h(x5) £(x5)/1h(x5)] £(x5) __ #positive h — #negative h
S f0G)/ IO Fig) > 1/ ()]

Selfnormalised importance sampling

For ratio estimator

n n
=> wih(Xi)/Z w;
i=1 i=1
with X; ~ g(y) and W; such that

E[Wi[X; = x] = kf(x)/g(x)

Selfnormalised variance

then

var(dy) ~) (Var(Sﬁ) — 2E™[h] cov(ST, ST) + E™[h]? mr(S‘f)) .

for N
=) Wih(Xy), St=> W
i

Rough approximation

vardy ~ %Var”(h(X)) {1 4 varg (W)}

Example (Student’s t distribution)
X ~ T (v,8,0%), with density

Mv+1/2) (. (x=0) s
o/ Vi T(v/2) * vo? ’

Without loss of generality, take 6 =0, 0 = 1.
Problem: Calculate the integral

J: (sinx(x))n fy(x)dx.

fy(x) =

Example (Student’s t distribution (2))

Simulation possibilities
A(0,1)

Directly from f,, since f, = =
e

Example (Student’s t distribution (2))

Simulation possibilities
A(0,1)

Directly from f,, since f, = —

X3
Importance sampling using Cauchy %°(0, 1)

Example (Student’s t distribution (2))

Simulation possibilities

Directly from f, since fy = M

X3
Importance sampling using Cauchy %°(0, 1)
Importance sampling using a normal .47(0, 1)
(expected to be nonoptimal)

Example (Student’s t distribution (2))

Simulation possibilities

Directly from f, since fy = M

Importance sampling using Cauf:(l:y €(0,1)
Importance sampling using a normal .47(0, 1)
(expected to be nonoptimal)

Importance sampling using a % ([0,1/2.1])
change of variables

70

65

o "v“v‘m\#\nm

6.0

55
|

<
]

30000 40000 50000

Samplmg from f (solld Imes) importance sampling with
Cauchy instrumental (short dashes), % ([0,1/2.1])
instrumental (long dashes) and normal instrumental (dots).

Acceleration methods

3 Monte Carlo integration
Introduction
Monte Carlo integration
Importance Sampling
Interlude #4: Harmonic mean estimator
Optimal IS
Interlude #5: IS suffers from curse of dimensionality
Acceleration methods
Interlude #6: Rao-Blackwellisation

Interlude #5: IS suffers from curse of dimensionality

As dimension increases, discrepancy between importance and
target worsens

Interlude #5: IS suffers from curse of dimensionality

As dimension increases, discrepancy between importance and
target worsens

Explanation:
Take target distribution 1 and instrumental distribution v

Simulation of a sample of iid samples of size n x7., from pu, = p®“
Importance sampling estimator for iy (fr) = [fn(X1:n)pn (dX1:m)

N i N -
) I) T W
niin) = N N
Zj:] Hj:] W;
where W} = %(E}(), and E} are iid with distribution v.

For {Vi}x>0, sequence of iid nonnegative random variables and for
n>1, Fn=0(Vik<n), set

n
u, = H Vi
k=1

b

Interlude #b5: IS suffers (2)

Since E[V;, 1] =1 and V,, 1 independent from F,,
]E(un+1 |]:n) = un]E(Vn—H |]:n) = un)

and thus {Un }n>0 martingale
Since x — +/x concave, by Jensen's inequality,

E(vUni1 | Fr) < VEUni1 | Fr) < VU,

and thus {v/Uy }n>0 supermartingale
Assume E(\/Vn11) < 1. Then

E(v/Un) = f[E(JVK) =0, m— oo
k=1

Interlude #5: IS suffers (3)

But {v/Un}n>0 is a nonnegative supermartingale and thus /U,
converges a.s. to a random variable Z > 0. By Fatou’s lemma,

E(Z) = E (lim \/uT) < liminf E(vUy) = 0.

n—oo n—oo

Hence, Z =0 and U,, — 0 a.s., which implies that the martingale
{Untn>o0 is not regular.
Apply these results to Vi = d—”(&‘) ie{l,...,Nk

dH i dH i _
El M(ak)]g@[(h(ak)}—k

with equality iff % =1, v-ae,ie nL=v.

Example (Stochastic volatility model)

Yt = Pexp (xt/2) e, et ~N(0,1)

with AR(1) log-variance process (or volatility)

Xt41 = @Xx¢ + oug, ue ~N(0,1)

Evolution of IBM stocks (corrected from trend and log-ratio-ed)

Example (Stochastic volatility model (2))

Observed likelihood unavailable in closed from.
Joint posterior (or conditional) distribution of the hidden state
sequence {Xy}1<k<k can be evaluated explicitly

Hexp { (xx — bxi_1)* + B2 exp(—x)k+Xk}/2 (1)

up to a normalizing constant.

Computational problems

Example (Stochastic volatility model (3))

Direct simulation from this distribution impossible because of
dependence among the Xy's,
dimension of the sequence {Xy}i1<k<k, and

exponential term exp(—xk)yi within (1).

Importance sampling

Example (Stochastic volatility model (4))

Natural candidate: replace the exponential term with a quadratic
approximation to preserve Gaussianity.
E.g., expand exp(—xy) around its conditional expectation ¢pxy_; as

exp(—xx) ~ exp(—dxy_1) {1 — (xk — dxy—1) + %(Xk — dxr1)2}

Example (Stochastic volatility model (5))
Corresponding Gaussian importance distribution with mean

e = dxi_1{072 + y& exp(—dxi_1)/2} — {1 — yi exp(—dpxy_1)}/2
‘ o2 + yZexp(—dxic1)/2

and variance

Tt = (072 + Yt exp(—Ppxi_1)/2)

Prior proposal on Xj,
X] ~ N(O) 0—2)

Example (Stochastic volatility model (6))

Simulation starts with X; and proceeds forward to X;,, each Xy
being generated conditional on Yy and the previously generated
Xk,1.

Importance weight computed sequentially as the product of

exp — {02 (xk — dx1_1)% + exp(— Xk)yk+xk} /2
exp — {Tk Xk—uk }T

(1 <k <K)

Density

0.00

0.4

T T
2 5 0 5 0 5 10 0 20 40 600 800 1000

log-weights t

Histogram of the logarithms of the importance weights (left)
and comparison between the true volatility and the best fit,
based on 10,000 simulated importance samples.

Highest weight rajectories

0.4

0.0

02

—0.a

Corresponding range of the simulated {X;};<k<100, compared
with the true value.

Acceleration methods

3 Monte Carlo integration
Introduction
Monte Carlo integration
Importance Sampling
Interlude #4: Harmonic mean estimator
Optimal IS
Interlude #5: IS suffers from curse of dimensionality
Acceleration methods
Interlude #6: Rao-Blackwellisation

Correlated simulations

Negative correlation reduces variance
Special technique — but efficient when it applies
Two samples (Xi,...,Xm) and (Y7,...,Yy) from f to estimate

J= J h(x)f(x)dx
R

1 m =N 1 m
— h(X and J, = — h(Y;
m; 2 m; (Yi)

with mean J and variance o2

Variance reduction

Variance of the average

ar M —(Lz+1cov(§ 3)
Vi 7 _2 7 T1y+J2)

If the two samples are negatively correlated,
COV(ﬁhﬁl) <0,

they improve on two independent samples of same size

Antithetic variables

If f symmetric about W, take Y; =2u—X;

If X; = F! (U;), take Y; = F! (1-1y)

If (Ay); partition of X', partitioned sampling by sampling
Xj's in each A; (requires to know Pr(A;))

Control variates

For
unknown and

known,
Jo estimated by ﬁo and
J estimated by J

Control variates (2)

Combined estimator
3 =T+ B3 — o)
J* is unbiased for J and

var(3*) = var(3) + BZvar(3) + ZBCOV(A Jo)

Optimal control

Optimal choice of 3

with

var(J*) = (1 — p?) var(3) ,
where p correlation between J and ﬁo
Usual solution:

Hlustration

Example (Quantile Approximation)

Evaluate .
p=Pr(X>a) —J f(x)dx
a
by
-] n

5= 13 10

p=— g > a)
with Xj iid f.

If Pr(X >) = % known

Hlustration

Example (Quantile Approximation (2))

Control variate

1 & RS
62%; (Xi>a) +B<n;H(Xi>H)_Pr(X>H))

improves upon p if

Hlustration

Example (Quantile Approximation (2))

Control variate

1 & RS
62%; (Xi>a) +B<n;H(Xi>H)_Pr(X>H))

improves upon p if

cov(p, po) , Pr(X > a)

<0 and |B|<2var(§o) PrX> 1)

Integration by conditioning

Use

Consequence

If 3 unbiased ~estimator of J = E¢[h(X)], with X simulated from a
joint density f(x,y), where

jf(x,y)dy — £(x),

the estimator
A E:[31Y1,..., Yal

dominate J(Xi, ..., Xy) variance-wise (and is unbiased)

Hlustration

Example (Student’s t expectation)

For
E[h(x)] = Elexp(—x?)] with X~ Z(v,0,0%)

a Student’s t distribution can be simulated as

Xy~N(goty) and Y~y

Hlustration

Example (Student’s t expectation (2))

Empirical distribution

-I m
2
E Z] eXp(_Xj [
]:
can be improved from the joint sample

((X1)Y]))"'3 (Xm)Ym))

Hlustration

Example (Student’s t expectation (2))

Empirical distribution

o

— ; exp(
can be improved from the joint sample

((X1)Y]))"'3 (Xm)Ym))

since o o
1 1 1
=) Elew(-XN = Y ———
m] m =1 ZGZYj +1

is the conditional expectation.
In this example, precision ten times better

Hlustration

0.60
|

058
|

0.56
|

054
|

052
|

=)
B
=

o 2000 4000 6000 8000 10000

Estimators of E[exp(—X?)]: empirical average (full) and
conditional expectation (dotted) for (v, u, o) = (4.6,0,1).

Interlude #6: Rao-Blackwellisation

3 Monte Carlo integration
Introduction
Monte Carlo integration
Importance Sampling
Interlude #4: Harmonic mean estimator
Optimal IS
Interlude #5: IS suffers from curse of dimensionality
Acceleration methods
Interlude #6: Rao-Blackwellisation

Interlude #5: Accept—Reject method

Given a density f(-) to simulate take
g() density such that

f(x) < Mg(x)

for M > 1 Lo

To simulate X ~ f, it is sufficient to : -
generate .

Y ~ g u|Y — U ~ u(O) MQ(U)) S u"n = ;,.2.-- - -0'4 'DIS' = D‘s :1ID
until

0<u<fly)

Interlude #5: Demarginalisation

Raw outcome: id sequences Y7,Ys,...,Yt ~ g and
Uy, Upy ..oy Uy ~U(0,1)
Random number of accepted Y;'s

P(N=n)= (2::) o/mta=1mnt

Interlude #5: Demarginalisation

Raw outcome: id sequences Y7,Y2,...,Yt ~ g and
Uy, Upy ...y U ~U(0, 1)
Joint density of (N,Y,U)

PIN=n,Y1 <yiy..., Yn <yn, U <uy,..., Uy <uy,)

_ J”“ g(tn)(unAwn)dth”‘ Jy Cg(t).. glta)

—0o0 —0Q
n—1
X Z H Wi /\uLJ H Wiy — WH +dt] ~dtn-1,
(1]» : vlt]) =1]:t

where w; = f(yi)/Mg(yi) and sum over all subsets of
{1,...,n— 1} of size t — 1

Interlude #5: Demarginalisation

Raw outcome: id sequences Y7,Y2,...,Y: ~ g and
Uy, Uy, ..., Uy Nu(())])
Marginal joint density of (Y;, U;)[IN=n,i<n

PN =n,Y1 <y,U; <uq)
n_-l 1 t—1] n—t—1
:<t1)(M) (]7ﬂ)

X [Ttl:]] (w1 Aug) (1 — %) + g(m —wi)" (%)} Jio g(t1)dts

and marginal distribution of Y;

m(y) = t=1/n-1f(y) + nt/n M

P(U; <wy)lYy =y,N=n) =

Interlude #6: Demarginalisation

Accept-reject sample (X7, ..., X) associated with (U, ..., Uy)
and (Yq,...,Yn)

N is stopping time for acceptance of m variables among Yj's
Rewrite estimator of [E[h] as

1 & 1o
— Y nXx)=— Y hyI
mi:1 (m].:1 U <wj »

with wj = f(Yj)/mMg(v;)
[Robert & Casella, 1996]

Interlude #6: Demarginalisation

Rao-Blackwellisation: smaller variance produced by integrating
out the Uj's,

1
m “

N
1
E[Hujgij»Yh ce)YN] h(Y]) = a E pih(Yi))

where (i < n)
pi =P(W <wilN=n,Yq,...,Yn)

—2 —2
..... ime) [2wy TS (1 —wy)

1 1)
Zrrntmn L2 Wiy TR (1 —wiy)

and pp = 1.

Numerator sum over all subsets of {1,...,i—1,1+1,...,n— 1} of

size m — 2, and denominator sum over all subsets of size m — 1
[Robert & Casella, 1996]

Monte Carlo Optimization

4 Monte Carlo Optimization

Simulation for optimisation

Two uses of computer-generated random variables to solve
optimization problems.
first use is to produce stochastic search techniques

« To reach the maximum (or minimum) of a function

= Avoid being trapped in local maxima (or minima)

= Are sufficiently attracted by the global maximum (or

minimum).

The second use of simulation is to approximate the function
to be optimized.

Introduction

Optimization problems can mostly be seen as one of two
kinds:

Find the extrema of a function h(0) over a domain ©
Find the solution(s) to an implicit equation g(8) = 0 over
a domain ©.

The problems are exchangeable

= The second one is a minimization problem for a function
like h(8) = g?(0)
= while the first one is equivalent to solving 0h(0)/06 =0

We only focus on the maximization problem

Deterministic or Stochastic

Similar to integration, optimization can be deterministic or
stochastic

Deterministic: performance dependent on properties of the
function

= such as convexity, boundedness, and smoothness

Stochastic (simulation)

= Properties of h play a lesser role in simulation-based
approaches.

Numerical Optimization

R has several embedded functions to solve optimization
problems

© The simplest one is optimize (one dimensional)

Example
Maximizing a Cauchy likelihood C(6, 1)
When maximizing the likelihood of a Cauchy C(0, 1) sample,
= 1
0OIXT, ...y Xn) = Hm,

i=1

The sequence of maxima (MLEs) — 6* = 0 when n — oo.

But the journey is not a smooth one...

Cauchy Likelihood (2)

T L e e
0 20 40 60 80 100 0 5 0 5 10

ndex xpet

MLEs (left) at each sample size, n = 1,500 , and plot of final
likelihood (right).

= Why are the MLEs so wiggly?

= The likelihood is not as well-behaved as it seems

Cauchy Likelihood (3)

The likelihood €(Blx1, ..., xn) = [T, W

Is like a polynomial of
degree 2n

The derivative has 2n
zeros

Hard to see if n =500
Hereisn =5

Newton-Raphson

Similarly, nlm is a generic R function uses the
Newton—Raphson method

Based on the recurrence relation

2 —1
oh i)] M o)

0.1 —=0: — g
L [aeaeT 30
where the matrix of the second derivatives is the Hessian

= This method is perfect when h is quadratic
» But may also deteriorate when h is highly nonlinear
= It also obviously depends on the starting point 6y when h
has several minima.

A Basic Solution

A natural if rudimentary way of using simulation to find
maxg h(0)
= Simulate points over © according to an arbitrary
distribution f positive on ©
= Until a high value of h(0) is observed

mmmmmmmmmmmmmmmm

Recall h(x) =
- [cos(50x) + sin(20x)]?
Max=3.8325

Histogram of 10° runs

Stochastic Gradient Methods

Generating direct simulations from the target can be difficult.
Different stochastic approach to maximization
Explore the surface in a A Markov Chain

local manner. The random component ¢;

Can use 05,1 =05 + ¢ can be arbitrary

Can also use features of the function: Newton-Raphson
Variation

011 = ej + (X]'Vh(ej) s o4 > 0,

+ Where Vh(0;) is the gradient
© oy the step size

Stochastic Gradient Methods (2)

In difficult problems

= The gradient sequence will most likely get stuck in a
local extremum of h.

Stochastic Variation

h(6; + B;G) — h(8; + B;G)
234

Ah(6;, B5G)

)

« (Bj) is a second decreasing sequence
C; is uniform on the unit sphere [|([| = 1.

We then use

0j41 = 06; + 26) AN(85, BiG) ¢

Likelihood optimisation

Practical optimisation of the likelihood function

n
0" = argmax L(0lx) = [Totxile).

i=1

assuming X = (X, ..., Xy)iidg(x|0)

Likelihood optimisation

Practical optimisation of the likelihood function

n
0" = argmax L(0lx) = H g(Xil0).
assuming X = (X, ..., Xy)iidg(x|0)
analytical resolution feasible for exponential families

vT(e) ism) = nv(6)

i=1

Likelihood optimisation

Practical optimisation of the likelihood function

n
0" = argmax L(0lx) = H g(Xil0).
assuming X = (X, ..., Xy)iidg(x|0)
analytical resolution feasible for exponential families

vT(e) ism) = nv(6)

i=1

use of standard numerical techniques like Newton-Raphson
e(t-H) — e(t] + IObS(X, e(t))—] Vue(t])

with £(.) log-likelihood and I°P% observed information matrix

EM algorithm

Cases where g is too complex for the above to work

Special case when g is a marginal

g(x|0) = L f(x,z/0) dz

Z called latent or missing variable

Hlustrations

censored data

X = min(X*, a) X*~N(6,1)
mixture model

X~ 3M(po, 1) +. 7N (, 1),
desequilibrium model

X = min(X*, Y*) X*~f1(x]0) Y*~f(x]0)

Completion

EM algorithm based on completing data x with z, such as
(X> Z) ~ f(X, Z|e)

Z missing data vector and pair (X, Z) complete data vector

Completion

EM algorithm based on completing data x with z, such as
(X> Z) ~ f(X, Z|e)
Z missing data vector and pair (X, Z) complete data vector

Conditional density of Z given x:

f(x,z|0)
g(x[0)

k(z|6,x) =

Likelihood decomposition

Likelihood associated with complete data (x, z)
L¢(0]x,z) = f(x,z|0)
and likelihood for observed data
L(O]x)
such that
log L(0|x) = E[log L°(0[x, Z)|00, x] — Ellog k(Z|0,%)[00,x] (2)

for any 0y, with integration operated against conditionnal
distribution of Z given observables (and parameters), k(z|0o,x)

[A tale of] two 0’s

There are “two 6’s” ! : in (2), 6 is a fixed (and arbitrary) value
driving integration, while 0 both free (and variable)

[A tale of] two 0’s

There are “two 6’s” ! : in (2), 6 is a fixed (and arbitrary) value
driving integration, while 0 both free (and variable)

Maximising observed likelihood
L(Blx)
equivalent to maximise r.h.s. term in (2)

Eflog L¢(8lx, Z)|00, x] — Ellog k(Z]0, x)|00, X]

Intuition for EM

Instead of maximising wrt 6 r.h.s. term in (2), maximise only

Ellog L(0lx, Z)|60, x|

Intuition for EM

Instead of maximising wrt 6 r.h.s. term in (2), maximise only
Ellog L(0lx, Z)|60, x|

Maximisation of complete log-likelihood impossible since z
unknown, hence substitute by maximisation of expected complete
log-likelihood, with expectation depending on term 6

Expectation—Maximisation

Expectation of complete log-likelihood denoted
Q(8160,x) = E[log L*(6Ix, Z)|60, X]

to stress dependence on 0y and sample x

Expectation—Maximisation

Expectation of complete log-likelihood denoted
Q(8160,x) = E[log L*(6Ix, Z)|60, X]

to stress dependence on 0y and sample x

EM derives sequence of estimators @(j), j=1,2,..., through
iteration of Expectation and Maximisation steps:

Q(85/85-1),x) = max Q(00;_1),x).
0

EM Algorithm

Iterate (in m)
1. (step E) Compute

Q(e|é\(m)>x) - E[]Og LC(G‘X, Z)‘é\(mbx])

2. (step M) Maximise Q(G\@(m),x) in © and set

é\(m+1) = argmax Q(Glé\(mj,x).

until a fixed point [of Q] is found
[Dempster, Laird, & Rubin, 1978]

Justification

Observed likelihood
L(Ofx)

increases at every EM step
L(®(mi1)x) > L(B(mlx)

[Exercice: use Jensen and (2)]

Censored data

Normal NV(6, 1) sample right-censored

] n—m
L(le):(zm/zexp{ zZ —e} ®(a—0)]

Censored data

Normal NV(6, 1) sample right-censored
1 _
L(6x) = (Zm/zexp{ 5 Z —) } Ola—0O) ™

Associated complete log-likelihood:

S PICE

i=m+1

N\-—‘

-I m
log L°(0]x, z) o —5 ;

where z;'s are censored observations, with density

exp{—3(z—0)} @(z—0)

k=0 = T 0a_0) T—®(a—0)

a<z.

Censored data (2)

At j-th EM iteration

Q(EI8;,%) —;Z(m—e)z—;E[> (z-op

Censored data (3)

Differenciating in 0,

A

Censored data (3)

Differenciating in 0,
with

A RPN ¢(a—0;)
E[Z]0;] :J zk(z|0),x) dz Nt .
§); a (G)» 1—(13((1—9(]))

I
i

Hence, EM sequence provided by

Oy = X+ O) +

m_ n—m |4 (p(a—@(]-))
n

which converges to likelihood maximum 0

Mixture of two normal distributions with unknown means
3-/\/’1(H0a]) + -7M(u1)1)a

sample Xj,..., X, and parameter 0 = (o, 11)
Missing data: Z; € {0, 1}, indicator of component associated with
Xi

Xilzi ~ Nz, 1) Zi ~B(.7)

Mixture of two normal distributions with unknown means

3-/\/’1(H0a]) + -7M(u1)1)a

sample Xj,..., X, and parameter 0 = (o, 11)
Missing data: Z; € {0, 1}, indicator of component associated with
Xi
Xilzi ~ Nz, 1) Zi ~B(.7)
Complete likelihood

2w =5 3 (120 (xi — o)’

1
logL¢(0x,2) -3

d o

Mixtures (2)

At j-th EM iteration

1 A

Q(8185,%) = SE [mi(y —) + (m—u)(flo — o) 15,]

Differenciating in 0

E [Tu ﬁ] ’@(j),x} /]E {TL]|/9\U),X}

D>

G+1 =
E [(n—m)ﬁo ’@(j),x} /E [(Tl—ﬂq”@m,x}

Hence /e\(j+‘|) given by

A

Zl 1E[Z

pxi| xi /T E | Zil0g), xi]

SILE[1-2)[8

s /S (1208

Step (E) in EM replaces missing data Z; with their conditional
expectation, given x (expectation that depend on é(m)).

N
i

My
EM iterations for several starting values

EM algorithm such that
it converges to local maximum or saddle-point
it depends on the initial condition 0y
it really really depends on the initial condition 6,

it hence requires several initial values when likelihood
multimodal

Simulated Annealing: Introduction

This name is borrowed from Metallurgy:

A metal manufactured by a slow decrease of temperature
(annealing)

= Is stronger than a metal manufactured by a fast decrease
of temperature.

The fundamental idea of simulated annealing methods
= A change of scale, or red temperature
= Allows for faster moves on the surface of the function h
to maximize.

Rescaling partially avoids the trapping attraction of local
maxima.

As T decreases toward 0O, the values simulated from this
distribution become concentrated in a narrower and narrower
neighborhood of the local maxima of h

simulated annealing algorithm

e Simulation method proposed by Metropolis et al. (1953)

Starting from 0y, (is generated from

¢ ~ Uniform in a neighborhood of 0.

The new value of O is generated as

0. — ¢ with probability p = exp(Ah/T) A1
' 0o with probability 1T — p,

o

Ah = h({) —h(6o)
If h(C) > h(0y), C is accepted
If h({) < h(Bp), ¢ may still be accepted

This allows escape from local maxima

o

o

o

Metropolis Algorithm - Comments

e Simulated annealing typically modifies the temperature T at
each iteration
e It has the form

Remark

1. Simulate (¢ from an instrumental distribution
with density g(|C—6il);

2. Accept 0;i;1 = (with probability

pi = exp{Ahy/Ti} AT,

take 0;,7 = 0; otherwise.

3. Update T; to Tiy7.

e All positive moves accepted
e AsT |0
o Harder to accept downward moves o No big
downward moves

Simple Example

g o g Trajectory:
- - R I
N) Ti= g5y
00 02 04 06 08 10 00 02 04 06 08 10 Log traJeCtOry aISO
works
- ¥ Can Guarantee
£ £ Finding Global Max
) i R code

00 02 04 06 08 10 00 02 04 06 08 10

Normal Mixture

Previous normal mixture
Most sequences find max
They visit both modes

Stochastic Approximation

We now consider methods that work with the objective
function h

= Rather than being concerned with fast exploration of the
domain ©.

Unfortunately, the use of those methods results in an
additional level of error

= Due to this approximation of h.

But, the objective function in many statistical problems can
be expressed as

© h(x) = E[H(x, Z)]
= This is the setting of so-called missing-data models

optimizing Monte Carlo approximations

If h(x) = E[H(x,Z)], a Monte Carlo approximation is

= Zi's are generated from the conditional distribution
f(z|x).

This approximation yields a convergent estimator of h(x) for
every value of x

= This is a pointwise convergent estimator

= Its use in optimization setups is not recommended

= Changing sample of Z;'s = unstable sequence of
evaluations

= And a rather noisy approximation to arg max h(x)

Bayesian Probit

Example: Bayesian analysis of a simple probit model

Y € {0, 1} has a distribution depending on a covariate X:

Po(Y=1X=x)=1—=Po(Y=0X=x) =D(0y + 01x),

Illustrate with Pima.tr dataset, Y= diabetes indicator,
X=BMI

Typically infer from the marginal posterior

arg maXJH @ (09+07%n)Y D (—0p—01%y) Y1 dO; = arg max h (6
B0 e 8o

= For a flat prior on 0 and a sample (x7,...,Xn).

Bayesian Probit — Importance Sampling

No analytic expression for h

The conditional distribution of 87 given 8 is also nonstandard

= Use importance sampling with a t distribution with 5 df
© Take p=0.1 and o0 = 0.03 (MLEs)

Importance Sampling Approximation

M
~ 1 ‘ L, _
ho(0o) = += > T @00+67%n)¥ @ (—80—07xn)' ¥it5(07% 1, 0)

m=1 i=1

Importance Sampling Evaluation

Plotting this approximation of h with t samples simulated for
each value of 9

= The maximization of the represented h function is not to
be trusted as an approximation to the maximization of h.

But, if we use the same t sample for all values of 0
= We obtain a much smoother function

We use importance sampling based on a single sample of Z;'s
= Simulated from an importance function g(z) for all values
of x
= Estimate h with

fimlx) = - > * i,z

Importance Sampling Likelihood Representation

W : Top: 100 runs, different

samples

Middle: 100 runs, same
sample

Bottom: averages over
100 runs

The averages over 100 runs are the same - but we will not do
100 runs

R code: Run pimax(25) from mcsm

Comments

This approach is not absolutely fool-proof
+ The precision of Ay, (x) has no reason to be independent

of x
= The number m of simulations has to reflect the most

varying case.

As in every importance sampling experiment

= The choice of the candidate g is influential
= In obtaining a good (or a disastrous) approximation of

h(x).

Checking for the finite variance of the ratio
fzilx)H(x, z1) /g(zi)
= |Is a minimal requirement in the choice of g

Missing-Data models and demarginalization

Missing data models are special cases of the representation
h(x) = E[H(x, Z)]

These are models where the density of the observations can
be expressed as

g(x|0) = L f(x,z|0) dz.

This representation occurs in many statistical settings

= Censoring models and mixtures

= Latent variable models (tobit, probit, arch, stochastic
volatility, etc.)

= Genetics: Missing SNP calls

Mixture Model

Example: Normal mixture model as a missing-data model

Start with a sample (x1,...,%n)
Introduce a vector (z1,...,2zn) € {1,2}™ such that

Po(Zi=1)=1—-Po(Zi =2)=1/4, XilZi=z~N(u;1),

The (observed) likelihood is then obtained as E[H(x, Z)] for

Hooz) o [T 3ep {~0—m)/2} TT S exp {~txi— w22

i, zi=1 i,zi=2

We recover the mixture model

1 3
ZN(}‘LU])"_ZN(Hb])

= As the marginal distribution of Xj.

Censored—-Data Likelihood

Example: Censored—data likelihood
Censored data may come from experiments

= Where some potential observations are replaced with a
lower bound
Because they take too long to observe.

Suppose that we observe Y1, ..., Yy, iid, from f(y —0)

= And the (n — m) remaining (Ymy1,..., Yn) are censored
at the threshold a.

The corresponding likelihood function is

L(6ly) =1 —Fla—0)"" me

= F is the cdf associated with f

Recovering the observed data likelihood

If we had observed the last n — m values

“ Say z=(Zmi1yeeey2Zn)y Withzi >a (i=m+1,...,n),
= We could have constructed the (complete data) likelihood

n
e|y> Hf _e) H f(zl_
i=m+1
Note that

L(6ly) =E[L°(6ly,Z)] = JZ L¢(0ly, z)f(zly, 0) dz,

= Where f(z|y, 0) is the density of the missing data
= Conditional on the observed data

= The product of the f(z; —0)/[1 — F(a —0)]'s

= f(z—0) restricted to (a,+00).

Comments

When we have the relationship

9(x]) = Lf(x,zle)dz.

= Z merely serves to simplify calculations
= it does not necessarily have a specific meaning
We have the complete-data likelihood L¢(0x,z)) = f(x, z|0)

= The likelihood we would obtain
= Were we to observe (x,z),the complete data

REMEMBER:

g(x|e) = Jz f(x,z/0)dz.

	Motivations
	Illustrations
	Interlude # 1: counting socks

	Random variable generation
	Uniform generators
	Interlude #2: Fibonacci generators
	Beyond Uniform distributions
	Transformation methods
	Accept-Reject Methods
	Interlude #3: Log-concave densities
	Ratio of Uniforms

	Monte Carlo integration
	Introduction
	Monte Carlo integration
	Importance Sampling
	Interlude #4: Harmonic mean estimator
	Optimal IS
	Interlude #5: IS suffers from curse of dimensionality
	Acceleration methods
	Interlude #6: Rao-Blackwellisation

	Monte Carlo Optimization
	Monte Carlo optimization
	EM algorithm
	Simulated Annealing
	Stochastic Approximation
	Missing-data models and demarginalization

