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1 Introduction

Even simple models may lead to computational complications, as in latent variable

models:

Monte Carlo Methods

Example 1 —Mixture models—

Christian P. Robert

Universit é Paris Dauphine Models of mixtures of distributions:

X ~ f; with probability p;,
forj =1,2,...,k, with overall density

X ~pifi(@) +- -+ prfe(e) .
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1.1 Likelihood Methods

For a sample of independent random variables (Xl, sy Xn), sample density
Maximum Likelihood Methods
n
H {p1fi(z) + -+ pefrlz)} . o For aniid sample X1, ..., X, from a population with density
i=1 f(z|01,...,0%), the likelihood function is

Expanding this product involves k™ elementary terms: prohibitive to compute in

L(0|X) L(ela"‘70k|x17"‘7xn)

H:;lf(l'i|91, 0.

large samples.

o Global justifications from asymptotics
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Example 2 —Mixtures again—
For a mixture of two normal distributions,

In the special case
f(alp,0) = (1—€)exp{(~1/2)2} + § exp{(~1/20%)(z — u)*} @)

with € > 0 known

PN (n, %) + (1 =p)N(0,07)
likelihood proportional to

Then, whatever n, the likelihood is unbounded:

- 1 Ti— M -1 z; — 0
H{PT 90( T >+(1—P)‘7 gp( o )} lin})g(ule,alxhw:lfw:oc

i=1

containing 2" terms.

Standard maximization techniques often fail to find the global maximum
because of multimodality of the likelihood function.
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Sample from (1) Likelihood of 7N (u1,1) + .3N (2, 1)
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1.2 Bayesian Methods

In the Bayesian paradigm, information brought by the data x, realization of
X ~ f(x]0),

combined with prior information specified by prior distribution with density 7 (6)

Models/MLE/Bayes

Example 3 —Binomial—

For an observation X from the binomial distribution (7, p) the (so-called)
conjugate prior is the family of beta distributions Be(a, b)

The classical Bayes estimator 0™ is the posterior mean
I'la+b+n)
T'la+x)T'(n—2x+0)
1
% / p p:r-‘ra—l(l _ p)n—x-‘rb—ldp
0

T +a
a+b+n’

o =
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Summary in a probability distribution, 7r(9|:1;), called the posterior distribution

Derived from the joint distribution f(z|0)(#), according to

- S @l0)m(0)
Ny EoEOT)

[Bayes Theorem]

where
m(z) = /f(x|9)7r(9)d0

is the marginal density of X

11 Models/MLE/Bayes 12

The curse of conjugate priors

The use of conjugate priors  for computational reasons
e implies a restriction on the modeling of the available prior information
o may be detrimental to the usefulness of the Bayesian approach

e gives an impression of subjective manipulation of the prior information

disconnected from reality.
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Example 4 —Mixture of two normal distributions—

T1, . ~ f(2]0) = po(x; p1,01) + (1 — p)o(w; pa, 02)

Prior

/~"i|0i NN(&-,U?/T%), 01‘2 NIQ(V¢/27S?/2),

Posterior

7T(9|£E1,...,1'n) X H{p@(l‘j;ﬂlvgl)

j=1
ZZ (ke)m(8](ke))
=0 (k)
Models/MLE/Bayes
where
) = 3Sme
Ta(ke) = i i1 T 52(k)
and
n1&y + €21 (k)
k — . &k)=
El( t) nq +[ ! 62( t)
. R nil
si(kr) = s7487(k) + o irf
o no(n — ¢
so(ky) = sﬁ + si(kﬁ,) + njELn)F

posterior updates of the hyperparameters

14
ZI,:l ("1"1\?
Z;l£é+ 1 (‘T/‘Jt

b~ Be(avﬁ)

+ (1 = p)p(xj; p2, 02)} w(0)

[0(2")]

—1(k))?,
— 2a(ks))’

naa + (n — é)iz(lw)

no +n—14¢
(& — z1(ke))?,

(&2 — 1772(A7L))Qa

13

15
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For a given permutation (k:t) conditional posterior distribution

m(0[(kt)) =

N (600k0, 7 ) X Z6((0n + /2512

1
2

<N (@(/@, U?) % TG ((va + 1 — €)/2, 55(ks)/2)

TL2+TL—E

xBe(a+L,8+n—1{)

Models/MLE/Bayes

Bayes estimator of 6:

57T(IL‘1, ..

n

) = 30 S wk)ET B, (k)]

£=0 (k)

Too costly: 2" terms

14

16
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e Rely on the possibility of producing (computer-wise) an endless flow of random

2 Random Variable Generation variables (usually iid) from well-known distributions

e Given a uniform random number generator, illustration of methods that produce

random variables from both standard and nonstandard distributions

Basics:Intro/Advanced 19 Basics:Intro/Advanced

2.1 Basic Methods

Consequence:

211 Introduction To generate a random variable X ~ F, suffices to generate

. . o U~ U,
For a function F" on R, generalized inverse of F', F'—, defined by
F_( ) inf { F( ) > } and then make the transform
u) =inf {z; F(x) > u} . _
x=F"(u)

Probability Integral Transform:

If U ~ Upp,1, then the random variable I/~ (U) has the distribution F".



Basics:Limits/Advanced

2.1.2 Desiderata and Limitations

“Any one who considers arithmetical methods
of reproducing random digits is, of course, in
a state of sin. As has been pointed out
several times, there is no such thing as a
random number---there are only methods of
producing random numbers, and a strict
arithmetic procedure of course is not such a
method."
[John Von Neumann, 1951)]

Basics:Limits/Advanced

: Given the initial value X, sample (X1, - - -, X,) always the

same

e Validity of a random number generator based on a single sample X1, ---, X,

when 1 tends to 4-00, not on replications
(Xlla e 7X17L)7 (X217 e ;X2n)7 AR (Xk17 e ;an)

where n fixed and k tends to infinity.

21 Basics:Limits/Advanced 22

e Production of a deterministic sequence of values in [0, 1] which imitates a

sequence of iid uniform random variables U[OJ].

e Can't use the physical imitation of a “random draw” [Nn0 guarantee of
uniformity, no reproducibility]

sequence in the sense: Having generated (Xl, ce ,Xn), knowledge
of X, [or of (X1, ---

Xps1.

,Xn)] imparts no discernible knowledge of the value of

23 Basics:Generator/Advanced 24

2.1.3 Uniform pseudo-random number generator

Algorithm starting from an initial value g and a transformation 1D, which produces

a sequence
(u;) = (D"(uo))
in [0, 1].
For all n,
(uh . 7un)

reproduces the behavior of an iid U, 1] sample (V1,- -+, Vy) when compared

through usual tests
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e Validity of the algorithm means that the sequence U1, - - - , U}, leads to accept
the hypothesis
H:Uy, -+ U, areiid U,

e The set of tests used is generally of some consequence
o Kolmogorov—Smirnov
o Time series methods, for correlation between U; and (U;_1, -+, U; )
O nonparametric tests

o Marsaglia’s battery of tests called Die Hard (!)
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Period , Ty, of a generator: smallest integer 1" such that
Uit T = Uy
for every 1,

A generator of the form X, ;1 = f(X,,) has a period no greater than M + 1
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2.1.4 The KISS Generator
A real-life generated random sequence takes values on
{()7 1,--- ,M}

rather than in
[0,1]

[M largest integer accepted by the computer]
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Warning! A uniform generator on [0, 1] should not never take the values 0 and 1
[Gentle, 1998]
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Congruential generator on {0, 1,--- 7M}: defined by the function
D(z) = (ax + b) mod (M + 1).
o Period and other performance of congruential generators depend heavily on
(a,b).

o With a rational, pairs (z,, D(x,)) lie on parallel lines.

Basics:KISS/Advanced

For k x k matrix T', with entries in {0, 1}, shift register generator : given by the
transformation

ZTpt1 = Ty (Mmod 2)
where x,, represented as a vector of binary coordinates e,,; € {0, 1},

k—1

Ty = E €ni2*.

=0

29
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1.0

0.6
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0.‘0 0‘.2 0‘.4 016 0‘.8 1.‘0
Representation of the line  y = 690692 mod 1 by uniform sampling with
sampling step 3 x 1074

Basics:KISS/Advanced

To generate a sequence of integers X1, X, - - -, the Kiss algorithm generates
three sequences of integers

o First, a congruential generator

L1 = (69069 x I, +23606797) (mod 2%?) |,

o Then two shift register generators (.J,,) and (K },)

o Overall sequence
X7L+1 = (In+1 + Jn—i—l + Kn+1) (mOd 232)

The period of Kiss is of order 295

Kiss has been successfully tested on Die Hard ‘

30

32
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2.2 Beyond Uniform Distributions

e Generation of any sequence of random variables can be formally implemented

through a uniform generator

o For distributions with explicit forms of '~ (for instance, exponential,
double-exponential or Weibull distributions),

the Probability Integral Transform can be implemented.

o Case specific methods, which rely on properties of the distribution (for
instance, normal distribution, Poisson distribution)

Basics/Advanced: Transforms

2.2.1 Transformation Methods
Case where a distribution F’ is linked in a simple way to another distribution easy to
simulate.

Example 5 —Exponential variables—  If U ~ L{[O’H, the random variable
X =—logU/\
has distribution

P(X <) P(=logU < \z)

P(U>e ) =1-e7,

the exponential distribution Exp(\).

33
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o More general (indirect) methods exist, for example the accept-reject and the

ratio-of-uniform methods

e Simulation of the standard distributions is accomplished quite efficiently by
many statistical programming packages (for instance, IMSL, Gauss,
Mathematica , Matlab/Scilab , Splus/R ).
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Other random variables that can be generated starting from an exponential include
14
2
Y =23 log(Uj) ~ x5,
Jj=1
1 a
Y=-3 > log(U;) ~ Gafa, )
Jj=1

_ 2?21 log(U;)

= = ~ Be(a,b)
Yot log(U;)
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Points to note
o Transformation quite simple to use
o There are more efficient algorithms for gamma and beta random variables
o Cannot generate gamma random variables with a non-integer shape parameter

o For instance, cannot get a X% variable, which would get us a A/(0, 1) variable.

Basics/Advanced: Transforms

Box-Muller Algorithm:

1. Generate Uy, Us iid Uy ;
2. Define

{1}1 = /—2log(uy) cos(2mus) ,

29 = y/—2log(uq) sin(2mus) ;

3. Take x; and zo, as two independent draws from
N(0,1).

37 Basics/Advanced:Transforms 38

Example 6 —Normal variables—  If r, § polar coordinates of (X7, X32), then,
r? = X{+ X5~ x; = Exp(1/2)

and

6 ~ uniform distribution on [0, 27]

Consequence: If Uz, Uz iid U 1),
X, = —2log(Uy) cos(2mUs)
Xo = +/—2log(U;) sin(27Us)
iid A/(0, 1).
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e Unlike algorithms based on the CLT, this algorithm is exact
e Get two normals for the price of two uniforms

e Drawback (in speed) in calculating log, cos and sin.
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Example 7 —Poisson generation—
Poisson—exponential connection:
If N ~P(\) and X; ~ Exp(N), i € N¥,
P\(N =k) =
P(Xi+ +Xp<1<Xy+- 4 Xpt1) .

Basics/Advanced: Transforms 43

e A generator of Poisson random variables can produce negative binomial

random variables since,

Y ~Ga(n,(1-p)/p) Xl|y~P(y)
implies
X ~ Neg(nvp)

Basics/Advanced:Transforms

e A Poisson can be simulated by generating exponentials until their sum exceeds
1.

e This method is simple, but is really practical only for smaller values of \.
e On average, the number of exponential variables required is \.

e Other approaches are more suitable for large \’s.

Basics/Advanced:Transforms

Mixture representation

e The representation of the negative binomial is a particular case of a mixture

distribution

e The principle of a mixture representation is to represent a density f as the

marginal of another distribution, for example
f(z) = Z pi fi(z)
i€y
e |f the component distributions fl(:v) can be easily generated, X can be

obtained by first choosing f; with probability p; and then generating an
observation from f;.

42
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2.2.2 Accept-Reject Methods

e Many distributions from which difficult, or even impossible, to directly simulate.

e Another class of methods that only require us to know the functional form of the

density f of interest only up to a multiplicative constant.

e The key to this method is to use a simpler (simulation-wise) density g, the
instrumental density, from which the simulation from the target density f is

actually done.

Basics/Advanced:Accept-Reject

Validation of the Accept-Reject method

This algorithm produces a variable Y

distributed accordingto  f

45
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Accept-Reject method

Given a density of interest f, find a density g and a constant M such that
fx) < Mg()

on the support of f.

1. Generate X ~g, U~Upy ;
2. Accept Y =X if U<f(X)/Mg(X) ;

3. Return to 1. otherwise.

Basics/Advanced:Accept-Reject 48

Uniform repartition under the graph of  f of accepted points
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Two interesting properties:

o First, it provides a generic method to simulate from any density f that is known
up to a multiplicative factor
Property particularly important in Bayesian calculations: there, the posterior
distribution
m(6)2) < 7(0) f(x]6) .

is specified up to a normalizing constant

o Second, the probability of acceptance in the algorithm is 1/M, e.g., expected

number of trials until a variable is accepted is M

Basics/Advanced:Accept-Reject

Example 8 —Normal from a Cauchy—

flz) = jgexm—ﬁ/m
and ) )
90 = T

densities of the normal and Cauchy distributions.

f(x)_ m —z?/ 2£_
R e

attained at x = +1.
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o In cases f and g both probability densities, the constant M is necessarily

larger that 1.

o The size of M, and thus the efficiency of the algorithm, functions of how closely

g can imitate f, especially in the tails

o For f/g to remain bounded, necessary for g to have tails thicker than those of
I
It is therefore impossible to use the A-R algorithm to simulate a Cauchy
distribution f using a normal distribution g, however the reverse works quite

well.
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So probability of acceptance
1/1.52 = 0.66,

and, on the average, one out of every three simulated Cauchy variables is rejected.

Mean number of trials to success 1.52.
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Example 9 Normal/Double Exponential

Generate a N (0, 1) by using a double-exponential distribution with density
g(z|a) = (@/2) exp(—alz|)

f(@) < Ea_le_az/z

glzle) = Vo
and minimum of this bound (in ) attained for o* = 1.

Probability of acceptance +/ 7T/2€ = .76: To produce one normal random variable,
this Accept-Reject algorithm requires on the average 1/.76 & 1.3 uniform

variables.

Compare with the fixed single uniform required by the Box-Muller algorithm.

Basics/Advanced:Accept-Reject

Can use the Accept-Reject algorithm with instrumental distribution
Ga(a,b), witha = [a], «>0.

(Without loss of generality, G = 1.)

Up to a normalizing constant,

o =0t exp{~(1 - tjap <o (F20)

forb < 1.
The maximum is attained at b = a/c.
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Example 10 —Gamma with non-integer shape parameter—
lllustrates a real advantage of the Accept-Reject algorithm

The gamma distribution ga(a, 6) represented as the sum of & exponential random

variables, only if «v is an integer
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Example 11 —Truncated Normal distributions—
Truncated Normals appear in many contexts

Constraints x > p produce densities proportional to

e_(ﬁ—ﬂ)2/2o'2 ]IxZH

for a bound (s large compared with 14

Alternatives far superior to the naive method of generating a/\/(,u, 02) until
exceeding £, which requires an average number of 1/®((x — ) /o) simulations

from N (i, o?) for one acceptance.



Monte Carlo Methods/October 13, 2003 57

Instrumental distribution: translated exponential distribution, &Up(a, H)’ with
density

Ja(2) = ae~ (1) L>u -
The ratio f /g, is bounded by

1/a exp(a?/2 —ap) ifa>p,

flg9a < {

1/a exp(—p?/2) otherwise.

Intro/Monte Carlo/Importance 59

3.1 Introduction

Two major classes of numerical problems that arise in statistical inference

- generally associated with the likelihood approach

- generally associated with the Bayesian approach

Monte Carlo Methods/October 13, 2003

3 Monte Carlo Integration

Intro/Monte Carlo/Importance

Example 12 —Bayesian decision theory—

Bayes estimators are not always posterior expectations, but rather solutions of the

minimization problem
m(sin/ L.(6,5) 7(6) f(z|6) 6 .
©

e For absolute error loss L(6,0) = |# — J|, the Bayes estimator is the posterior

median

58
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3.2 Classical Monte Carlo integration

Generic problem of evaluating the integral
3=E/[h(X)) = [ hle) f(o) da
X

where X is uni- or multidimensional, f is a closed form, partly closed form, or

implicit density, and h is a function

Intro/Monte Carlo/Importance/Acceleration

Estimate the variance with

m

Um = ——— [h(x;) — hm]27

and for m large,

hin — Ef[R(X)]
No

Note: This can lead to the construction of a convergence test and of confidence

~ N(0,1).

bounds on the approximation of I ¢ [2.(X)].

61
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First use a sample (X1, . .., X, ) from the density f to approximate the integral J
by the empirical average

_ 1 &
h = — Y h(z;
Jj=1
Average

. — By [h(X))]

by the Strong Law of Large Numbers

Intro/Monte Carlo/Importance/Acceleration 64

Example 13 —Cauchy prior—

For estimating a normal mean, a robust prior is a Cauchy prior

X ~N(0,1), 6~C(0,1).

Under squared error loss, posterior mean

R 2
—(@=0)"/249
/oo 1 926

577(1,) = —F 1

[ 7w
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Form of 0™ suggests simulating iid variables 01, - - -, 6,,, ~ N (z, 1) and calculate
0
S T
- 14 6;
Zi:l 1 + 03

The Law of Large Numbers implies

o (x) — §"(x) asm — oo.

Intro/Monte Carlo/Importance

Evaluation of

by
1. Generate a sample X1, ..., X,, from a distribution g

2. Use the approximation

~

1 (X5) _

Jj=1

Q
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3.3 Importance Sampling

Simulation from f (the true density) is not necessarily optimal

Alternative to direct sampling from f is importance sampling , based on the

alternative representation

/(0] = | [h(x) ﬁm;] 9(z) d

which allows us to use other distributions than f

Intro/Monte Carlo/Importance 68

Convergence of the estimator

Ly SX5) j) — v(x) f(x) dx
o ]2_:1 (X)) h(X;) /X h(z) f(z) dx
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o Same reason the regular Monte Carlo estimator h,,, converges

o converges for any choice of the distribution g [as long as
supp(g) D supp(f)]
o Instrumental distribution g chosen from distributions easy to simulate

o The same sample (generated from g) can be used repeatedly, not only for
different functions h, but also for different densities f

o Even dependent proposals can be used, as seen later

Intro/Monte Carlo/Importance

The choice of ¢ that minimizes the variance of the importance sampling

estimator is
_ |h(@)] ()
Jz [h(2)] f(z)dz

9" ()

Rather formal optimality result since optimal choice of g* (m) requires the

knowledge of J, the integral of interest!

69 Intro/Monte Carlo/Importance 70

Although g can be any density, some choices are better than others:

o Finite variance only when

s FOOT [ P
@V“MM}Ah”mmd<'

o Instrumental distributions with tails lighter than those of f (that is, with

sup f/g = 00) not appropriate.

o Ifsup f/g = oo, the weights f(z;)/g(x;) vary widely, giving too much

importance to a few values x ;.

o Ifsup f/g = M < oo, the accept-reject algorithm can be used as well to
simulate f directly.

71 Intro/Monte Carlo/Importance 72

Practical alternative

oy h(X5) f(X5)/9(X5)
Yoy F(X)/e(X5)

where f and g are known up to constants.

o Also converges to J by the Strong Law of Large Numbers.
o Biased, but the bias is quite small

o In some settings beats the unbiased estimator in squared error loss.



Intro/Monte Carlo/Importance

Example 14 —Student's  distribution— X ~ 7 (v, 0, 02), with density

T((v+1)/2) (z — )2\ T2
oy/vm I'(v/2) <1+ vo? ) )

Without loss of generality, take § = 0, o = 1.

[ (259 s

fu($) =

Calculate the integral
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4 Notions on Markov Chains

Intro/Monte Carlo/Importance

e Simulation possibilities

. . _ N(0,1)
o Directly from f,, since f, = —~="
VX2

o Importance sampling using Cauchy C (0, 1)

o Importance sampling using a normal N(O, 1)
(expected to be nonoptimal)

o Importance sampling using a 2/ ([0, 1/2.1])

change of variables

Basics/Irreducible/Recurrent/Invariant/Ergodic/Limits/Quanta/CLT

4.1 Basics

Markov chain sequence of random variables whose distribution evolves over time

as a function of past realizations

Chain defined through its transition kernel , a function K defined on X x B(X)

such that
@i). Yz € X, K(x,-) is a probability measure;

(i). VA € B(X), K (-, A) is measurable.

74

76
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e When X isa

a (transition) matrix KK with elements

(finite or denumerable) set, the transition kernel simply is

Pa:y:Pr(Xn:y|Xn—1: )7 x,yEX

Since, for all z € X, K (x, -) is a probability, we must have

Py >0 and K(z,X)=> Py =1

yex

The matrix K is referred to as a Markov transition matrix ~ or a stochastic

matrix

Basics/Irreducible/Recurrent/Invariant/Ergodic/Limits/Quanta/CLT

Markov chains

Given a transition kernel K, a sequence Xg, X1,..., Xy, ... of random variables
is a Markov chain denoted by (Xn) if, for any ¢, the conditional distribution of X

given x;_1,T¢_o,...,Tq is the same as the distribution of X; given x;_1. Thatis,

Pr(Xk+1 S A|$0,$1,$2, R ,{Ek) = Pr(Xk+1 S A|$k)

= /Aﬁ(;z:k, dzx)

77 Basics/Irreducible/Recurrent/Invariant/Ergodic/Limits/Quanta/CLT 78

e Inthe
K(z, ") of the transition K (x, )

case, the kernel also denotes the conditional density

Pr(X € Alz) = / Az, 2")dx'.
A

Then, for any bounded ¢, we may define

Note that

Ko(z)] < /X R, d)|o(y)] < ol = sup [6(a).

We may also associate to a probability measure p the measure , defined as
WK(A) = [ p(do)K (e )
X
79 Basics/Irreducible/Recurrent/Invariant/Ergodic/Limits/Quanta/CLT 80

Note that the entire structure of the chain only depends on
o The transition function K

o The initial state x¢ or initial distribution Xy ~ 1
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Example 15 —~Random walk—  The normal random walk is the kernel K (z, -)

associated with the distribution
2
Np(@,771p)
which means
Xt+1 = Xt -+ TEt

€; being an iid additional noise

Basics/Irreducible/Recurrent/Invariant/Ergodic/Limits/Quanta/CLT

Ona X ={xg,21,...},

e A function ¢ on a discrete state space is uniquely defined by the (column)

vector ¢ = (¢(xq), p(1),...,)T and
Ko@) =) _ Puyo(y)

yeX
can be interpreted as the xth component of the product of the transition matrix
K and of the vector ¢.

e A probability distribution on P(X’) is defined as a (row) vector
w= (p(xg), u(x1), - ..) and the probability distribution 1K is defined, for
eachy € X as
nE({y}) =D n({a}) Py
TEX
yth component of the product of the vector i and of the transition matrix K.

81 Basics/Irreducible/Recurrent/Invariant/Ergodic/Limits/Quanta/CLT 82

100 consecutive realisations of the random walk in R2 with 7 =1

83 Basics/Irreducible/Recurrent/Invariant/Ergodic/Limits/Quanta/CLT 84

Composition of kernels

Let Q1 and (2 be two probability kernels. Define, for any z € X and any
A € B(X) the product of kernels Q1 Q2 as

&%@Mzﬁ&@@ﬂﬂﬂ)

When the state space X is discrete, the product of Markov kernels coincides with

the product of matrices Q1 x Q.
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4.2 Irreducibility

S " . _— In the continuous case, the chain is @-irreducible for some measure  if for some n,
Irreducibility is one measure of the sensitivity of the Markov chain to initial

conditions K"(z,A) >0

It leads to a guarantee of convergence for MCMC algorithms eforallz e X

In the discrete case, the chain is irreducible if all states communicate, namely if o forevery A € B(X) with cp(A) >0

P,(ry <o0) >0, Ve,y € X,

Ty being the first (positive) time y is visited
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Minoration condition

Small sets
Assume there exist a probability measure v and € > 0 such that, for all z € X and If there exist C' € B(X), <p(C) > (), a probability measure v and € > 0 such that,
al A € B(X), forallz € C'andall A € B(X),

K(z,A) > ev(A) K(z,A) > ev(A)

This is called a minoration condition

. . . . . ) C'is called a small set
When K is a Markov chain on a discrete state space, this is equivalent to saying

that Py, > Oforallz,y € & For discrete state space, atoms are small sets.
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4.3 Transience and Recurrence

e Irreducibility ensures that every set A will be visited by the Markov chain (Xn)

e This property is too weak to ensure that the trajectory of (Xn) will enter A

often enough.

e A Markov chain must enjoy good stability properties to guarantee an acceptable

approximation of the simulated model.
o Formalizing this stability leads to different notions of recurrence

o For discrete chains, the recurrence of a state equivalent to probability one of

sure return.

o Always satisfied for irreducible chains on finite spaces
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Stronger form of recurrence: Harris recurrence

A set A is Harris recurrent if

P,(nsg =00) = 1lforalz € A.

The chain (X,,) is U-Harris recurrent if it is
o )—irreducible
o for every set A with 1)(A) > 0, A is Harris recurrent.

Note that
P.(na = o00) =1 implies E [na] = 0o

89
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In a finite state space X, denote the average number of visits to a state w by
oo
e =Y L.(X;)
i=1

If B, [nw] = 00, the state is recurrent
If E,,[n.] < oo, the state is transient

For irreducible chains, recurrence/transience property of the chain , not of a

particular state

Similar definitions for the continuous case.
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4.4 Invariant Measures

Stability increases for the chain (Xn) if marginal distribution of X, independent of

n

Requires the existence of a probability distribution 7 such that

Xn+1 ~m if Xn ~ T
A measure 7 is invariant for the transition kernel K (-, -) if

©(B) = /X K(z,B) n(dz), VBeBX).
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o The chain is positive recurrent if 7 is a probability measure.

e}

Otherwise it is null recurrent or transient

If ™ probability measure, 7 also called stationary distribution since

Xo ~ mimplies that X,, ~ 7 for every n

The stationary distribution is unique
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YW(4) = lim

n—oo

p(d) P (xz, A)

n—oo

= hm/X/P”l(x,dw)K(w,A)
= [ K (w4

since setwise convergence of f uP”(m, ) implies convergence of integrals of
bounded measurable functions. Hence, if a limiting distribution exists, it is an
invariant probability measure; and obviously, if there is a unique invariant probability

measure, the limit v, will be independent of 1+ whenever it exists.
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Insights

Invariant probability measures are important not merely because they
define stationary processes, but also because they turn out to be the

measures which define the long-term or ergodic behavior of the chain.

To understand why this is so, consider P, (X, € ) for a starting distribution 1. If a

limiting measure -y, exists such as
P,(X, €A —.(4)

forall A € B(X), then
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4.5 Ergodicity and convergence

We finally consider: to what is the chain converging?
The invariant distribution 7t natural candidate for the limiting distribution
A fundamental property is ergodicity , or independence of initial conditions.

In the discrete case, a state w is ergodic if

lim |K"(w,w)—7m(w)|=0.

n—oo
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In general , we establish convergence using the total variation norm

1 — pollrv = sup 11 (A) — pa(A)

and we want
| w0 wutan) =
TV
= sip / K"(z, A)p(dx) — w(A) '
to be small.
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There are difference speeds of convergence
o ergodic (fast enough)
o geometrically ergodic (faster)

o uniformly ergodic (fastest)
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Harris recurrence and ergodicity

If (X,,L) Harris positive recurrent and aperiodic, then

n—0o0

lim H/ K"(x, )pu(dx) —
. TV
W

for every initial distribution

We thus take “Harris positive recurrent and aperiodic” as equivalent to “ergodic”
[Meyn & Tweedie, 1993]

Convergence in total variation implies
lim B, [A(X,)] - E7[A(X)]| = 0

for every bounded function .
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Geometric ergodicity

A ¢-irreducible aperiodic Markov kernel P with invariant distribution 7 is
geometrically ergodic if there exist V' > 1, and constants p < 1, R < oo such
that (n > 1)

1P (x,.) =7 ()llv < RV (x)p",

on {V' < oo} which is full and absorbing.
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Geometric ergodicity implies a lot of important results
e CLT for additive functionals n /2 3" g(X}) and functions |g| < V'

e Rosenthal’s type inequalities
n P
B, |y g(Xp)| <Clp)n??,  glP <2
k=1
e exponential inequalities (for bounded functions and o« small enough)

E. < exp aZg(Xk) < 00
k=1
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The following conditions are equivalent:
e (X,,), is uniformly ergodic,
e there exist p < 1 and R < oo such that, forall x € X,
|1P"(x,-) = mllov < Rp"™.
e for some n > 0,
sup || P™(z, ) — 7(-)||rv < 1.
reX

[Meyn and Tweedie, 1993]
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Minoration condition and uniform ergodicity

Under the minoration condition, the kernel K is thus contractant and standard
results in functional analysis shows the existence and the unicity of a fixed point 7.

The previous relation implies that, for all z € X.
1P () = 7llrv < (1—€)"

Such Markov chains are called uniformly ergodic
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4.6 Limit theorems

Ergodicity determines the probabilistic properties of average behavior of the chain.
But also need of statistical inference, made by induction from the observed sample.

If || P} — 7| close to 0, no direct information about

X, ~ P"

We need LLN'’s and CLT's!!!
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Classical LLN’s and CLT’s not directly applicable due to:
o Markovian dependence structure between the observations X;

o Non-stationarity of the sequence
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Central Limit Theorem

To get a CLT, we need more assumptions.
For MCMC, the easiest is reversibility :

A Markov chain (X, ) is reversible if for all n,

Xn+1|Xn+2 =T~ Xn+1|Xn =T
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Ergodic Theorem

If the Markov chain  (X,) is Harris recurrent, then for any function ~ h with

E|h| < o0,
. 1
lim — E h(X;) = [ h(z)dr(x),
n—oo N “— .
%
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[Green, 1995]
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If the Markov chain  (X,) is Harris recurrent and reversible,

N

3" (h(Xa) —E"[A]) | 5 N(0,43) -

n=1

2=

where
0<? = Eqh(Xo)]

+2 i E,[h(Xo)h(X))] < +oo.
k=1

[Kipnis & Varadhan, 1986]
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In the 90’s, a wealth of contributions on quantitative bounds triggered by MCMC
algorithms to answer questions like: what is the appropriate burn in? or how long
should the sampling continue after burn in?

[Douc, Moulines and Rosenthal, 2001]

[Jones and Hobert, 2001]
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4.7 Quantitative convergence rates

Let P a Markov transition kernel on (X', B(X)), with P positive recurrent and 7 its

stationary distribution

Convergence rate Determine, from the kernel, a sequence B(Z/, n) such that
lvP™ x|l < B(r,n)
where V : X — [1, 00) and for any signed measure i,

[ullv = sup [u(e)|
6|<V
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For MCMC algorithms, kernels are “explicitly” known.
Type of quantities (more or less directly) available:

o Minoration constants
K®(xz,A) > ev(A), foral xz e C,
e Foster-Lyapunov Drift conditions,

KV <AV 4 bl

and goal is to obtain a bound depending explicitly upon €, A, b, &c...
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Coupling

If X ~ pand X’ ~ ' and p A i/ > ev, one can construct two random variables
X and X" such that

X ~ /1,5(/ ~p' and X = X' with probability €

The basic coupling construction
e with probability €, draw Z according to v and set X=X =2

e with probability 1 — €, draw X and X' under distributions

(n—ev)/(L—€) and (4" —ev)/(1—¢),

respectively.
[Thorisson, 2000]
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Small set and coupling sets

C C X small set if there exist € > 0 and a probability measure v such that, for all
A€ B(X)
K(z,A) > ev(4), VzeCl. )

Small sets always exist when the MC is -irreducible
[Jain and Jamieson, 1967]

For MCMC kernels, small sets in general easy to find.

If C'is a small set, then C' = C' x C'is a coupling set:

V(z,2') € C,VA € B(X), K(z,A)AK(x',A) > ev(A).
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X, X' r.v/s with probability distribution K (x,.) and K (', .), respectively, can be
coupled with probability € if:

Kz, )ANK(2',") > vy (.)
where v, . is a probability measure, or, equivalently,
1K (2, ) = K(2',)lrv < (1 =€)
Define an e-coupling set asaset C' C X x X satisfying :

V(z,2') € C, VA€ B(X), K(x,A)NK(2', A) > vy (A)
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Coupling for Markov chains

P Markov transition kernel on X x X such that, for all (x,2") ¢ C (where C'is an
e-coupling set) and all A € B(X) :

P(z,2; Ax X)=K(x,A) and P(z,2";X x A) = K(a2', A)
For example,
o for (z,2') ¢ C, P(z,2'; A x A') = K(x, A)K (2', A").
e Forall (z,2') € C'andall A, A’ € B(X), define the residual kernel

R(z, 2 Ax X)=(1—€) YK (z,A) — evy o (A))
Rz, ;X x A') = (1 — ) 1 (K (2, A) — evy o (A)).
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Coupling algorithm

e Initialisation Let Xo ~ & and X(j ~ & and setdy = 0.
e After coupling If d,, = 1, then draw X, 11 ~ K(X,, ), and set
Xy = Xns1.
e Before coupling If d,, = 0 and (X,,, X) € C,
— with probability €, draw X, 1 = X, | ~ vx, x: andsetd, 1 = 1.

— with probability 1 — €, draw (X, 1, X}, 1) ~ R(X,, X],; ) and set
dn+1 = 0

—1fd, = 0and (X,, X)) & C, then draw

(Xn+17X7,’L+1) ~ P(Xy, X3;).

(Xn, X;L, dn) [where d,, is the bell variable which indicates whether the chains
have coupled or not] is a Markov chain on (X x X x {0, 1}).
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Drift conditions

To exploit the coupling construction, we need to control the hitting time

Moments of the return time to a set C' are most often controlled using
Foster-Lyapunov drift condition

PV <AV +blg, V>1
My = A"*V(Xp)I(tc > k), k > 1is a supermartingale and thus

E.[A7C] < V(z) + bA e (2).

Conversely, if there exists a set C' such that E,, [)FTO} < oo for all z (in a full and
absorbing set), then there exists a drift function verifying the Foster-Lyapunov

conditions.

[Meyn and Tweedie, 1993]
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Coupling inequality

Define the coupling time 1" as
T =inf{k > 1,d;, = 1}
Coupling inequality
sup [EPF(A) — €' PH(A)| < PegrolT > K]
A

[Pitman, 1976; Lindvall, 1992]
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If the drift condition is imposed directly on the joint transition kernel P, there exist
V >1,0< )< 1landasetC suchthat:

PV (z,2") < \V(z,2') Y(z,2') ¢ C
When P(z,2'; A x A’) = K(x, A)K(2', A’), one may consider
V(z,a') = (1/2) (V(z) + V("))

where V' drift function for P (but not necessarily the best choice)
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DMR'01 result

For any distributions £ and &', and any j < k, then:
IEPF() =& PEC)llrv < (1 =€) + NBI T B g0 0V (Xo, X))
where

B=1VA!(1—-e€supRV.
e}
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Minoration

Assume that the kernel density 8 satisfies, for some density q(-), ¢ € (0,1) and a
smallset C' C X,

Rylx) > eq(y) foral ye X and x € C

Then split K into a mixture
R(ylz) =ea(y) + (1 — ) R(ylx)

where SR is residual kernel
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4.8 Renewal and CLT

Given a Markov chain (Xn)n how good an approximation of

Standard MC if CLT

Vi (G, — Ex[g(X)]) % N(0,42)

and there exists an easy-to-compute, consistent estimate of '73...
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Split chain

Let &g, 01, 2, . . . be iid Ber(e). Then the split chain

{(X07 50)a (X17 61)’ (X27 52)7 .. }
is such that, when X; € C, §; determines X 1:

q(z) it 6; =1,

Xig1 ~
i {9‘%(1‘|X1) otherwise

[Regeneration] When (X;,0;) € C'x {1}, X;11 ~q
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Renewals

For Xg ~ q and R successive renewals, define by 71 < ... < Ty the renewal

times.
Then

VR

R
VR (3, ~ Balg(0]) = 2| 5 D (50 = NiExlg(X))

where Ny length of the ¢ th tour, and .S; sum of the g(X;)’s over the ¢ th tour.
Since (N¢, St) areiid and Eq[Sy — Ny E[g(X)]] = 0, if Ny and \S; have finite

2nd moments,
_ d
e VR (4., —Exg) = N(0,72)

e there is a simple, consistent estimator of 'ys
[Mykland & al., 1995; Robert, 1995]
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5 The Metropolis-Hastings Algorithm

Monte Carlo Methods/October 13, 2003

Moment conditions

We need to show that, for the minoration condition, Eq [N7] and E,[S7] are finite.
If

1. the chain is geometrically ergodic, and

2. E,[|g]*T*] < oo for some a > 0,

then Eq[N7] < 0o and Eq[S?] < oo.
[Hobert & al., 2002]

Note that drift + minoration ensures geometric ergodicity
[Rosenthal, 1995; Roberts & Tweedie, 1999]

MCMC/Metropolis-Hastings/Examples/Extensions

5.1 Monte Carlo Methods based on Markov Chains

Unnecessary to use a sample from the distribution f to approximate the integral

RGeS

Now we obtain X1, ..., X,, ~ f (approx) without directly simulating from f,
using an ergodic Markov chain with stationary distribution f
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For an arbitrary starting value (), an ergodic chain (X (!)) is generated
using a transition kernel with stationary distribution f

e Insures the convergence in distribution of (X(t)) to a random variable from f.
e For a “large enough” 1§, X (T0) can be considered as distributed from f

e Produce a dependent sample X (To) , X(TO‘H), ..., which is generated from

£ sufficient for most approximation purposes.
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Algorithm 16 —Metropolis—Hastings—

Given (%),
1. Generate Y; ~ q(y|z®).

2. Take
x(t+1) {Yt with prob. p(z"), Y4),
z®  with prob. 1 — p(z®,Y}),

where

—
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5.2 The Metropolis—Hastings algorithm

5.2.1 Basics

The algorithm starts with the objective (target) density

A conditional density
a(ylz)
called the instrumental (or proposal) distribution  , is then chosen.
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Features

o Always accept upwards moves

e Independent of normalizing constants for both f and ¢(-|x) (constants

independent of x)
e Never move to values with f(y) = 0

e The chain (l‘(t))t may take the same value several times in a row, even though

f is a density wrt Lebesgue measure

e The sequence (y;); is usually not a Markov chain
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5.2.2 Convergence properties

1. The M-H Markov chain is reversible , with invariant/stationary density f since it

satisfies the detailed balance condition
| f) K(y,2) = f(z) K(x,y) |

2. As f is a probability measure, the chain is positive recurrent

3. If

—
—_
~—

r { () g(XO)
FX@) q(¥i[X®)

that is, the event {X(t“‘l) = X(t)} is possible, then the chain is aperiodic

21 <1

MCMC/MH/Examples/Extensions

5.3 A Collection of Metropolis-Hastings Algorithms

5.3.1 The Independent Case

The instrumental distribution ¢ is independent of X(t), and is denoted g by analogy

with Accept-Reject.
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q(y|x) > 0 for every (z,y),

the chain is irreducible
5. For M-H, f-irreducibility implies Harris recurrence

6. Thus, for M-H satisfying (1) and (2)
(a) For h, with E¢|h(X)| < oo,

S IR
lim T;h(X( )y = /h(a:)df(a:) ae. f.

T—o0

(b) and
/ K"z, uldr)— f| =0
TV

for every initial distribution 41, where K™ (z, -) denotes the kernel for

lim ‘

n—oo

transitions.
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Algorithm 17 —Independent Metropolis-Hastings—

Given (),
1. Generate Y; ~ g(y)

2. Take

f(Yy) g(z®) 1}

t+1) _ ) Yy  with prob. Inin{ - ,
XU =4 f(®) g(¥:)

x®  otherwise.
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The resulting sample is not iid
There can be strong convergence properties:

The algorithm produces a uniformly ergodic chain if there exists a constant
M such that

f(x) < Mg(z), x€supp f.

In this case,
1 n
K" (z,-) — <[1-— .
I = v < (1 5 )

and the expected acceptance probability is at least ﬁ

[Mengersen & Tweedie, 1996]

MCMC/MH/IMH/Extensions

and

Algorithm 20 —Gamma Metropolis-Hastings—
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Example 18 —Generating gamma variables—
Generate the Ga(«, 3) distribution using a gamma Ga([a], b = [a] /) candidate

Algorithm 19 —Gamma accept-reject—

1. Generate Y ~ Ga([a], [o]/a)

2. Accept X =Y with prob.

<e y exp(—y/a)>a_[°‘] .

«
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Comparison

Close agreement in M-H and A-R, with a slight edge to M-H.

=

1. Generate V; ~ Ga([a], [a]/ )

2. Take

. Yi 2 -V
x(t+1) — ) Yy with prob. (x(t) exp{a

x®  otherwise.

0

85

]

80

o 1000 2000 3000 4000
(5000 iterations)

Accept-reject (solid line) vs. Metropolis—Hastings (dotted line) estimators of
E;[X?] = 8.33, for « = 2.43 based on Ga(2,2/2.43)
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5.3.2 Random walk Metropolis—Hastings

Use the proposal
Y, = X0 g,

where £; ~ g, independent of xX®.

The instrumental density is now of the form g(y — ) and the Markov chain is a

random walk if we take g to be symmetric

MCMC/MH/RWMH/Extensions

Example 22 —Random walk normal—

Generate N (0, 1) based on the uniform proposal [—4, ¢]

The probability of acceptance is then

2 «
p(z, ) = exp{ (=" —y7)/2} A 1.

[Hastings (1970)]
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Algorithm 21 —Random walk Metropolis—

(1) — Y,  with prob. min {1, -

1. Generate Y; ~ g(y — z(*))

x®  otherwise.

MCMC/MH/RWMH/Extensions
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Sample statistics

d 0.1 0.5 1.0
mean 0.399 —-0.111 0.10

variance 0.698 1.11  1.06

As ¢ T, we get better histograms and a faster exploration of the support of f.
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Example 23 —Mixture models—

n k
m(0|x) H Zpef(wjlue,ae) (6)

| j=1 \t=1

e

mﬁ “ ‘ | ||
s
“lll. . |IIII|““ “llllll- L .||III|‘“
- S : N N h ©

0
w

El

Metropolis-Hastings proposal:

It
it

m

@

) - . - gt+1) 00 +we® it ul® < p®
) I|| . . |I||-.- . ") otherwise
where
Figure 1: Three samples based on U[—4, 6] with (@) § = 0.1, (b) § = 0.5 and (c) @ (00 4 we®|z)
& = 1.0, superimposed with the convergence of the means (15, 000 simulations). B 71'(9(’5) |)

and w scaled for good acceptance rate

MCMC/MH/RWMH/Extensions 147 MCMC/MH/RWMH/Extensions 148

Random walk sampling (50000 iterations)

Random walk MCMC output for . 7A (p11,1) 4+ .3N (2, 1)

tea

00 10 20

W
1
|

0123456

II||||||||||I I =]
ot ARt

e T e, § . l

[Celeux & al., 2000]
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Example 24 Comparison of tail effects

Random-walk Metropolis—Hastings algorithms based on aN(O, 1) instrumental for
the generation of (a) aN(O, 1) distribution and (b) a distribution with density

_ () oc (1 + |2])~°
Convergence properties | .

= =

Uniform ergodicity prohibited by random walk structure i " \«\m
At best, geometric ergodicity: 7 ‘ 7

For a symmetric density  f, log-concave in the tails, and a positive and

00
00

45
0

symmetric density g, the chain (X(t)) is geometrically ergodic.
[Mengersen & Tweedie, 1996]

10
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o]
]
o

100 150 200 o so 100 150 200
@ [

90% confidence envelopes of the means, derived from 500 parallel

independent chains
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Further convergence properties

Under assumptions Further [further] convergence properties

e (A1) f is super-exponential, i.e. it is positive with positive continuous first P
. If -irreducible and aperiodic, for r = (r(n real-valued non decreasin

derivative such that lim | n(x)"Vlog f(x) = —oc where v P (r(n))nen 9
) sequence, such that, foralln, m € N,

In words : exponential decay of f in every direction with rate tending to co r(n+m) < r(n)r(m),
® (A2) limsup|, | n(z)'m(z) < 0, where m(z) = V f(z)/|V f(z)|. and 7(0) = 1, for C asmall set, 7c = inf{n > 1, X, € C},and h > 1,
In words: non degeneracy of the countour manifold assume
Tc—l
Crapy={y: fly) = f(z)} swpE, | Y r(k)h(X) | < oo,

(Q is geometrically ergodic, and z€C k=0
V(x) o f(2)~'/? verifies the drift condition

[Jarner & Hansen, 2000]
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then,

S(f,C,r) = {r c X,E, {Ti 7’(k:)h,(X;\/.,)} < OC}

k=0
is full and absorbing and for = € S(f,C,r),

lim r(n)|[|P"(z,.) — f|ln = 0.

[Tuominen & Tweedie, 1994]

MCMC/MH/RWMH/Extensions

Alternative conditions

The condition is not really easy to work with...
[Possible alternative conditions]
(a) [Tuominen, Tweedie, 1994]  There exists a sequence (Vn)neN,
Vi, > r(n)h, such that
(i) supe Vo < o0,
@iy {Vo =00} C {V1 =00} and
@iy PVyy1 <V, —r(n)h+br(n)le.
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Comments

[CLT, Rosenthal’s inequality...] ~ h-ergodicity implies CLT for additive (possibly

unbounded functionals) of the chain (under additional conditions, guaranteeing
the integrability of the limit), Rosenthal’s inequality (also for functions whose
growth at infinity is controlled properly) and so on...

[Control of the moments of the return-time] The condition implies (because

h > 1) that

Tc—l n
sup E,[ro(7¢)] < sup E, Z r(k)h(Xy) p < 0o, whererg(n) = » (1)
zeC zeC E—0 1=0
Can be used to derive bounds for the coupling time, an essential step to
determine computable bounds, using coupling inequalities
[Roberts & Tweedie, 1998; Fort & Moulines, 2000]

MCMC/MH/RWMH/Extensions 156

(b) [Fort2000] IV > f > land b < oo, such that sup, V' < oo and

PV(z) + E, {UZC Ar(k)f(Xk)} < V(z)+ blc(z)
k=0

where o ¢ is the hitting time on C' and

Ar(k) =r(k) —r(k—1),k > 1land Ar(0) = r(0).

Result (a) < (b) < sup,cc Ex { Z(:gl '7‘(k),f'(Xk,)} < 00.
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5.4 Extensions

There are many other algorithms
o Adaptive Rejection Metropolis Sampling
o Reversible Jump (later!)
o Langevin algorithms

to name a few...

MCMC/Metropolis-Hastings/Examples/Extensions:Langevin

Discretization:

2
2 =20 4 TV log f(aV) 4 oer, e~ N(0,1,)

2

where o“ corresponds to the discretization

Unfortunately, the discretized chain may be be transient, for instance when

lirf |02V10g f(x)|ac|_1| >1

MCMC/Metropolis-Hastings/Examples/Extensions:Langevin

5.4.1 Langevin Algorithms

Proposal based on the Langevin diffusion L; is defined by the stochastic differential

equation
1
dL; = dB; + §V10g f(Lt)dt,
where B; is the standard Brownian motion

The Langevin diffusion is the only non-explosive diffusion which is reversible with

respect to f.

MCMC/Metropolis-Hastings/Examples/Extensions:Langevin

MH correction

Accept the new value Y; with probability

sy {0 - 5| far)

. AT
f() exp {— |[2® —V; — 2 Vlog f(Yt)H2 /202}

Choice of the scaling factor o
Should lead to an acceptance rate of to achieve optimal convergence rates
(when the components of & are uncorrelated)

[Roberts & Rosenthal, 1998]
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5.4.2 Optimizing the Acceptance Rate

Problem of choice of the transition kernel from a practical point of view

Most common alternatives:

(a) a fully automated algorithm like ARMS;

(b) an instrumental density g which approximates f, such that f/g is bounded for

uniform ergodicity to apply;
(c) arandom walk

In both cases (b) and (c), the choice of g is critical,

MCMC/Metropolis-Hastings/Examples/Extensions:Accept rate

Practical implementation
Choose a parameterized instrumental distribution g(-|@) and adjusting the

corresponding parameters 6 based on the evaluated acceptance rate

. 2 «
p(o) = p— > Trwogte)>f@ogw} -
=1

where 1, . .., Z,, sample from f and y1, ..., Y, iid sample from g.
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Case of the independent Metropolis—Hastings algorithm

Choice of g that maximizes the average acceptance rate

2P<f(y)2f(X)>, X~fYr~g,

g(Y) — 9(X)

Related to the speed of convergence of

1 I
Z h(X(t))
t=1

N

to E¢[h(X)] and to the ability of the algorithm to explore any complexity of f

MCMC/Metropolis-Hastings/Examples/Extensions:Accept rate

Example 25 Inverse Gaussian distribution.

Simulation from

f(2]61,62) x 273/% exp {—912 - %2 + 24/60105 + log \/202} Ig, (2)

based on the Gamma distribution Ga(a, 3) with a = 34/602/61

Since

g(z)
the maximum is attained at

P oo op {000 - 2] |

* o __
x,@_

2(8 —61)

(a+1/2) = /(a+1/2)2 + 40,(0; — 3)
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The analytical optimization (in 3) of

M(B) = (a5)~*7/% exp {(ﬁ — 1) — 22}

is impossible

154 0.2 0.5 0.8 0.9 1 1.1 1.2 1.5

p(B) 022 041 054 0.56 0.60 0.63 0.64 0.71
E[Z] 1.137 1.158 1.164 1.154 1.133 1.148 1.181 1.148
E[1/Z] 1.116 1.108 1.116 1.115 1.120 1.126 1.095 1.115

(61 = 1.5,05 = 2, and m = 5000).

MCMC/Metropolis-Hastings/Examples/Extensions:Accept rate

If the average acceptance rate is low, the successive values of f (yt) tend to be

small compared with f(x(t)), which means that the random walk moves quickly on

the surface of f since it often reaches the “borders” of the support of f

165

167

MCMC/Metropolis-Hastings/Examples/Extensions:Accept rate

Case of the random walk

Different approach to acceptance rates

A high acceptance rate does not indicate that the algorithm is moving correctly since

it indicates that the random walk is moving too slowly on the surface of f.

It (") and y; are close, i.e. f(2(*)) ~ f(y,) y is accepted with probability

min (szgc%)ﬂ) ~1.

For multimodal densities with well separated modes, the negative effect of limited

moves on the surface of f clearly shows.

Monte Carlo Methods/October 13, 2003

Rule of thumb
In small dimensions, aim at an average acceptance rate of 50%. In large
dimensions, at an average acceptance rate of 25%.

[Gelman,Gilks and Roberts, 1995]
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6 The Gibbs Sampler

Principle/Data Augmentation/Improper Priors

Algorithm 26 —The Gibbs sampler—

Given x(*) = (x(lt), ., z), generate

1. Xl(t—H) ~ fl(m1|xgt),...,:rz(f));

2. Xé”” ~ fg(x2|x(1t+l),:c:(3t), . ,:L'](gt)),

t+1 t+1 t+1
p. X]g ) pr(xp|x(1 )""71);71))

Then X+ — X ~ f

169 Principle/Data Augmentation/Improper Priors 170

6.1 General Principles

A very specific simulation algorithm based on the target distribution f:
1. Uses the conditional densities f1, ..., fp from f
2. Start with the random variable X = (X1,...,X,)

3. Simulate from the conditional densities,

Xilz1, wo, .o L1, Tig1, ..., T

~ fi(xi|3317$27 s Li—15 L1y - - - 7'1:;0)

fori =1,2,...,p.

171 Principle/Data Augmentation/Improper Priors 172

Properties

The full conditionals densities f1, ..., f, are the only densities used for simulation.

Thus, even in a high dimensional problem, all of the simulations may be univariate

The Gibbs sampler is not reversible  with respect to f. However, each of its p
components is. Besides, it can be turned into a reversible sampler, either using the

Random Scan Gibbs sampler (see below) or running instead the (double) sequence

firfoafpfo-1-- 1
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Example 27 —Bivariate Gibbs sampler—

(X)Y) ~ f(l'ay)

Generate a sequence of observations by o
O
Set Xg = x¢ o
Fort =1,2,..., generate
i ~ fyix(lze-1)
X~ fxpy(ly)

where fy|x and fx|y are the conditional distributions

Principle/Data Augmentation/Improper Priors 175

For the special case

Principle/Data Augmentation/Improper Priors

Principle/Data Augmentation/Improper Priors

174

(X4, Yi)+, is a Markov chain
(X4)¢ and (Y3)4 individually are Markov chains

For example, the chain (X¢); has transition density
Kw.a") = [ Foxlulo) fxy (@ )y

with invariant density fx ()

176

Properties of the Gibbs sampler

1 p
(Xv Y) ~ N2 0, ) Fo

p 1
un

the Gibbs sampler is

1
Given y;, generate 5
Xeoa lye ~ Nlpy, 1=p7), 3.
Yigr | zer ~ N(pzsr, 1—p7). A

rmally, a special case of a sequence of 1-D M-H kernels, all with acceptance rate

iformly equal to 1.

The Gibbs sampler

. limits the choice of instrumental distributions
requires some knowledge of f
is, by construction, multidimensional

. does not apply to problems where the number of parameters varies as the

resulting chain is not irreducible.
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6.1.1 Completion

The Gibbs sampler can be generalized in much wider generality

A density g is a completion of f if

Principle:Completion/Data Augmentation/Improper Priors

The move from Y (V) to Y (t+1) s defined as follows:

Algorithm 28 —Completion Gibbs sampler—

Given (y%t)., . ,yy(,t)), simulate

1LY g lys .y,

1 1
2. v o gz(yz\yiH ),yét),m»yz(f)),

t+1 t+1 t+1
p. Y g (YY),

177 Principle:Completion/Data Augmentation/Improper Priors 178

g should have full conditionals that are easy to simulate for a Gibbs

sampler to be implemented with g rather than f
For p > 1, write y = (, z) and denote the conditional densities of
9() =gy, yp) by
}/1|y27‘~-7yp ~ gl(y1|y27"‘7yp)7
}é‘ylvy:’n"'vyp ~ gQ(y2|y17y37"'7yp)7
c

}/;)|y17"'7yp—1 ~ gp(yp|y1a"'7yp—l>'

179 Principle:Completion/Data Augmentation/Improper Priors 180

Example 29 —Mixtures all over again—
Hierarchical missing data structure

If
k
Xl, . e '7Xn ~ szf(aj'gz)?
i=1

then
X|Z ~ f($|92), A Npﬂl(z = 1) + ... +pk]1(z = k)’

and Z is the component indicator associated with observation x
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Conditionally on (Z1, ..., Zn) = (21,...,2n) :

w(pl,...,pk,el,...,0k|x1,...,
o pix1+n171 N .pgk—F”lk_l
><7r(91|y1 4+ n1x1, A1 + nl) -

with

n; = Z]I(zj =1i) et
J

Principle:Completion/Data Augmentation/Improper Priors

T =500

5
E

0
0

181
Ty 21y -y 2Zn)
(O |yr + neZp, Ak + ng),
T; = Z CL’J/’IL@
Jizj=1
183

T = 1000

T = 2000

5
5

1
0

T = 3000

T = 4000

15
5

1
1

T = 5000

Estimation of the pluggin density for 3

components and T iterations

for 149 observations of acidity levels in lakes in the American North-East
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Corresponding Gibbs sampler

1. Simulate
0; ~ 7T(91‘|yi 4+ N T, A +’I’Li) (’L = 1,...,]6)
(p1y--ypk) ~ D(ag +n1, ..., ) + ng)

2. Simulate (j = 1,...,n)

k
Zjlxj,ph-.. ,pk,gl,.. . ,ek ~ Zpij]l(zj — Z)
=1

with (i = 1,..., k)
Pij x pif(x;]0;)

and update n; and T; (i = 1,..., k).
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025
|

0.20

015
I

0.10
I

0.00
L

Galaxy dataset ( 82 observations) with k& = 2 components
average density (yellow), and pluggins:
average (tomato), marginal MAP (green), MAP (marroon)
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6.1.2 Random Scan Gibbs sampler

Modification of the above Gibbs sampler where, with probability 1/p, the ¢-th
component is drawn from f; (z;| X ;)

The Random Scan Gibbs sampler is reversible.

Principle:Slice/Data Augmentation/Improper Priors

Algorithm 30 —Slice sampler—

Simulate
t+1
1. w; ) Nu[O,fl (e(t))];
t+1
k wy Y ~ U, . (o))
k1. 0D ~ Uy ii), with

ACY = Ly fi(y) 2wV i= 1,00 k),

185 Principle:Slice/Data Augmentation/Improper Priors

6.1.3 Slice sampler

If f(6) can be written as a product

k
H fi (9)7
i=1
it can be completed

k
I To<w.<r. 0>

i=1
leading to the following Gibbs algorithm:

187 Principle:Slice/Data Augmentation/Improper Priors

>
u UYD] X zY)

Representation of a few steps of the slice sampler

[Roberts & Rosenthal, 1998]
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189 Principle:Properties/Data Augmentation/Improper Priors 190

6.1.4 Properties of the Gibbs sampler

(}/17Y27"'7YP) Ng(y17"'7yp)
If either

(1) g (y;) > Oforeverysi = 1,---,p, implies that g(y1, . . ., y,) > 0, where
The slice sampler usually enjoys good theoretical properties (like geometric 99 denotes the marginal distribution of Y3, or

ergodicity). [Positivity condition]

As k increases, the determination of the set A1) may get increasingly complex. (i) the transition kernel is absolutely continuous with respect to g,

then the chain is irreducible and positive Harris recurrent.

0. 1f [ h(y)g(y)dy < oo, then

lim ;;hl(Y“)) Z/h(y)g(y)dy ae. g.

nT— o0

Principle:Properties/Data Augmentation/Improper Priors
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Slice sampler
(ii). If, in addition, (Y ()) is aperiodic, then

Properties of X; and of f(X}) identical
lim K"(y, u(dx) — =
s H/ (Y, Ju(dw) — f . 0 If f is bounded and suppf is bounded, the simple slice sampler is uniformly
for every initial distribution . ergodic.

[Mira & Tierney, 1997]
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Slice sampler: drift

For ¢* > ¢,,
C = {33 €EX; e < f(fE) < 6*} Under some differentiability and monotonicity conditions, the slice sampler also
; verifies a drift condition with V' (z) = f(x _'B, is geometrically ergodic, and there
isa
Pr(x ) €x M() exist explicit bounds on the total variation distance
k) -
* [Roberts & Rosenthal, 1998]
where
J(A) = 1 /E* AAN L(E))de Example 31 —Exponential Exp(1)—
€ Jo A(L(e)) Forn > 23,
it L(e) ={z € X; f(x) > €}
[Roberts & Rosenthal, 1998] ||Kn(ma ) - f()”TV < .054865 (0-985015)n (” - 15-7043)
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Example 32 —A poor slice sampler—
Consider
For any density such that d
yaensty f(x) =exp{~|lz||} =zeR
0 : : :
6& A({z € X; f(x) > €}) isnon-increasing Slice sampler equivalent to one-dimensional slice sampler on
then m(z)=21e™ 2> 0
| (,-) = f()]lrv < .0095
or on
[Roberts & Rosenthal, 1998] 7r(u) _ e,ul/d w>0

Poor performances when d large (heavy tails)

194
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1 dimensional run 1 dimensional acf

fN&y” i w‘) il Mm”m Wqu~‘yMuW;

2 1 0 1

0002

[ 200 400 600 800 1000 o 10 20 20 0

10 dimensional run 10 dimensional acf

6.1.5 Hammersley-Clifford Theorem

10 15 20 25 30

An illustration that conditionals determine the joint distribution

20 dimensional acf

If the joint density g(y1, y2) have conditional distributions g1 (y1|y2) and

: W 0 (y2|y1)' o
I ( - 92(y2ly1)
100 dimensional run 100 dimensional acf g yl’ y2 f 92 v | yl ) /gl (yl |rU)
Sample runs of log(u) and ACFs for log(u) ( Roberts & Rosenthal, 1999)
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6.1.6 Hierarchical models

The Gibbs sampler is particularly well suited to hierarchical models

General case . . . . . .
Example 33 —Hierarchical models in animal epidemiology—

Under the positivity condition, the joint distribution g satisfies Counts of the number of cases of clinical mastitis in 127 dairy cattle herds over a
( ﬁ Wes[Yers - Yo, Yoyyo - Y,) one year period.
(0.8
91, Yp) 1 /( [Yers -2 Y, 1 j[ TR yép) Number of cases in herd 7
for every permutation £ on {1,2,...,p} and every y € ). Xi~PN) i=1,---,m

where \; is the underlying rate of infection in herd ¢

Lack of independence might manifest itself as overdispersion.



Principle:Hierarchy/Data Augmentation/Improper Priors

Modified model

X; ~ P\
Ai o~ ga(avﬁi)
/Bi ~ Ig((l,b),

The Gibbs sampler corresponds to conditionals

Xi o~ w(\ilx,a,8) = Galx; + o, [1 + 1//6’1-]71)
ﬁi ~ W(ﬁi|x7a7avb7/\i) :Ig(a+a7 [Al—i_]‘/b]il)

Principle/Data Augmentation/Improper Priors

Convergence is ensured

(V1,Y2)® = (v,Ya)~yg
Yl(t) — Yi~aq
Yz(t> — Yo~ g

201 Principle/Data Augmentation/Improper Priors

6.2 Data Augmentation

The Gibbs sampler with only two steps is particularly useful

Algorithm 34 —Data Augmentation—

Given y(t),
1. simutate V" ~ gy (|9 ;

)

2.. Simulate YQ(H_I) ~ gg(y2|y§t+1)) .

203 Principle/Data Augmentation/Improper Priors

Example 35 —Grouped counting data—

360 consecutive records of the number of passages per unit time.

Number of 0 1 9

passages 3 4 ormore

Number of
observations 139 128 55 25 13

202
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Algorithm 36 —Poisson-Gamma Gibbs—

Feature Observations with 4 passages and more are grouped 1. Simulate Yi(t) N 77(/\(“1)) Loy i=1,...,13

If observations are Poisson P (), the likelihood is

2.. Simulate
13
£(>\|CL‘1,...,1‘5) () (t)
s\ P A~ Ga 313+;yi , 360 | .
1=
— 347X\ 1284+55%x2425%3 = N
x e A (1 e Z ] > ,
i=0
which can be difficult to work with.
The Bayes estimator
Idea With a prior m(A) = 1/, complete the vector (y1, . .., y13) of the 13 units .
13
larger than 4 5T 1 (t)
=_—— 313 + -
converges quite rapidly
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6.2.1 Rao-Blackwellization

105

If (y1,Y2,-- -, yp)(t), t=1,2,...T is the output from a Gibbs sampler

o= i n (") - / h(y1)g(y1)dy:

and is unbiased. The Rao-Blackwellization replaces dq with its conditional

104
01020 30 4

_ -IllIIIIIIl“l“lIIII-II--
0.9 1.0 1.1 1.

lambda

108

2

1022

expectation
T

1 (t) t
: L DI

10
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Then
o Both estimators converge to E[h(Y7)]
o Both are unbiased,

o and

var (B [a()¥”, . v ) < var(h(12),

so 0, is uniformly better (for Data Augmentation)

Principle/Data Augmentation:Rao-Blackwell/Improper Priors 211

To estimate . = E(X) we could use

or its Rao-Blackwellized version

1 & 1 <&
_1 @y - 1 ()
o T;:lE[X Iy ()] T;:l:gy ,

which satisfies O'go /Ug1 = p% > 1.
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Some examples of Rao-Blackwellization

e For the bivariate normal
(Xa Y)/ ~N y

the Gibbs sampler is based upon

Xy ~ Npy, 1-p%
Y|z ~ N(pr,1-p%).

Principle/Data Augmentation:Rao-Blackwell/Improper Priors 212

e For the Poisson-Gamma Gibbs sampler, we could estimate A\ with

1 T
= — (t)
do T ;:1 AW,

but we instead used the Rao-Blackwellized version

1 i) (i i
57\' = Z E[A(t)|xl7x2a"'7x57y:([)7y£)7"'7y§_ )]
t=1

1 13 ()
- 313 (t
360 ( +Z - Yi )

t=1

el

N
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Another substantial benefit of Rao-Blackwellization is in the approximation of
densities of different components of ¢y without nonparametric density estimation
methods.

The estimator
1 T
t . .
72 9ilwily” 3 # 1) = giw),
t=1

and is unbiased.

Principle/Data Augmentation/Improper Priors

6.3 Improper Priors

Unsuspected danger resulting from careless use of MCMC algorithms: It can

happen that
o all conditional distributions are well defined,
o all conditional distributions may be simulated from, but...

o the system of conditional distributions may not correspond to any joint

distribution

Warning The problem is due to careless use of the Gibbs sampler in a situation for

which the underlying assumptions are violated
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6.2.2 The Duality Principle

Ties together the properties of the two Markov chains in Data Augmentation

Consider a Markov chain (X)) and a sequence (Y (*)) of random variables

generated from the conditional distributions

XO® o w(aly®)
YD 20 @O o f(ya®,y®)

Properties
o If the chain (Y'(V)) is ergodic then so is (X ()
o The conclusion holds for geometric or uniform ergodicity.

o The chain (Y (*)) can be discrete, and the chain (X *)) can be continuous.

Principle/Data Augmentation/Improper Priors 216

Example 37 —Conditional exponential distributions—

For the model

Xi|ze ~ Exp(xe) , Xalxy ~ Exp(ay)

the only candidate f(x1,z2) for the joint density is

f(z1, 22) x exp(—z122),

but
/ f(‘/l;l', fl;2)d.’171d(1/‘2 = 00

(C) These conditionals do not correspond to a joint probability distribution
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Example 38 —Improper random effects—
For a random effect model,

Y;'j:,U,—I-Oéi—Fé'ij, Z:].,

where
a; ~ N(0,0?) and e;; ~ N(0,72),
the Jeffreys (improper) prior for the parameters p, o and 7 is

1

W(M702,72)= o272

Principle/Data Augmentation/Improper Priors

Evolution of (1(*)) and corresponding histogram

Ak

il rl

!
i

I
‘1 A
i 1

2o nlull I

(1000 iterations)

observations
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The conditional distributions
J(yi — 1) 2, 2
ailya/“t30-237—2 N(m’(‘]T 2+U 2) ! )
,U|0‘ayaC’2,7'2 ~ N(g_a77—2/‘]l) )
oPla, py, 7~ TG 1/2,(1/2)) ] of |,
i
2 2 2
T |a7:u‘7y70 ~ Ig IJ/27(1/2)Z(Z/1J_051_/~1') )
1,J
are well-defined and a Gibbs sampling can be easily implemented in this setting.
220
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The figure shows the sequence of the u(t) and the corresponding histogram for

1000 iterations. The trend of the sequence and the histogram do not indicate that

the corresponding “joint distribution” does not exist
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Final notes on impropriety

The improper posterior Markov chain

cannot be positive recurrent

The major task in such settings is to find indicators that flag that something is wrong.
However, the output of an “improper” Gibbs sampler may not differ from a positive

recurrent Markov chain.

Example The random effects model was initially treated in Gelfand et al. (1990) as
a legitimate model
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7.1 Introduction

There exist setups where

One of the things we do not know is the number of things we do

not know

[Peter Green]

Monte Carlo Methods/October 13, 2003

7 MCMC tools for variable dimension problems

Intro/Green/Point Pro

Bayesian Model Choice

Typical in model choice settings
- model construction (nonparametrics)
- model checking (goodness of fit)
- model improvement (expansion)
- model prunning (contraction)
- model comparison
- hypothesis testing (Science)

- prediction (finance)

222
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Many areas of application

variable selection

change point(s) determination

image analysis

graphical models and expert systems
variable dimension models

causal inference

Intro/Green/Point Pro

Modelling by a mixture model

i
M cxy~ ZpZiN(NZiao'lgi)
=1

i?

225
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Example 39 —Mixture modelling—

Benchmark dataset: Speed of galaxies

[Roeder, 1990; Richardson & Green, 1997]

20

15

10

05

00

| II L I|IIIII-I
5 2.0 2.5

1.0 a -
velocities
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Bayesian variable dimension model

A variable dimension model is defined as a collection of models (k = 1....

My = {f(:|0k); O € Ok},

associated with a collection of priors on the parameters of these models,

Tk (k) ,

and a prior distribution on the indices of these models,

Alternative notation:

(Mg, Or) = o(k) w1 (Or)
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Formally over:

1. Compute

Pi i(x|0;)m;(0;)do;
p‘/@i‘m (6,

E D) fi(x]0;)m;(0;)do;
: J'/@j j(2|05)m;(05)ab;

pMifx) =

2. Take largest p(91;|2) to determine model, or use

ij /@ fi(2]0;)m;(0;)do;

as predictive

[Different decision theoretic perspectives]

Intro/Green/Point Pro

7.2 Green's method

Intro/Green/Point Pro 230

Difficulties

Setting up a proper measure—theoretic framework for designing moves between
models My
[Green, 1995]

Create a KonH =J, {k} x Oy such that

/A /B A(z, dy)r(z)dz — /B /A Ay, de)r(y)dy

for the invariant density 7 [ is of the form (k, §(%))]

e (formal) inference level [see above]

e parameter space representation
0= Do,
k

[even if there are parameters common to several models]

e (practical) inference level:
model separation, interpretation, overfitting, prior modelling, prior coherence

e computational level:

infinity of models, moves between models, predictive computation

Intro/Green/Point Pro 232

Write R as
A, B =Y / (2, 4) G (, dy) + ()5 (2)

where q,,,(z, dy) is a transition measure to model 9,,, and p,,, (z, y) the

corresponding acceptance probability.

Introduce a measure &, (dz, dy) on $2 and impose on
7(dz)qm (z, dy) to be absolutely continuous wrt &,,,

r(d2)m(a,dy)
Enldr,dy)  9mmY)

Then

pm(z,y) = min {1, Lﬁ'(y’ 7) }
Im(z,9)

ensures reversibility
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Special case

When contemplating a move between two models, 91, and 915, the Markov chain
being in state 61 € M1, denote by R _2(01,dA) and Ro_,1 (02, dP) the

corresponding kernels, under the detailed balance condition
7T(d91) ﬁl_a(el, de) = 7T(d(92) ﬁ2_>1(92, d9) s

and take, wiog, dim(9t2) > dim(91y).

Proposal expressed as
O = V1 5(01,v1-2)

where v1_,2 is a random variable of dimension dim(92) — dim (9 ), generated

as

UV1—2 ~ @IHQ(UlHQ) .

Intro/Green/Point Pro

Interpretation (1)

The representation puts us back in a fixed dimension setting:
o My x Y1_9 and N5 in one-to-one relation.

e regular Metropolis-Hastings move from the couple (61, v1_.2) to 2 when
stationary distributions are (91, 01) X w1_2(v1_2) and (M, H2), and
when proposal distribution is deterministic (??)

233 Intro/Green/Point Pro 234

In this case, q12(61, df2) has density

OV o (01, v152) |
0(01,v1-2)

)

901_>2(?)1—>2)

by the Jacobian rule.
If probability zo1 o of choosing move to 915 while in 9J1;, acceptance probability
reduces to

7(My, O2) wa 1
(M1, 01) w12 P12(v1-2)

0V _2(01,v1-2)

01,v19) =1A
OL( s 2) 0(91,’071*)2)

235 Intro/Green/Point Pro 236

Consider, instead, that the proposals

92 ~ N(\Ijl—>2(913 U1—>2)7€) and \Ill—>2(017v1—>2) ~ N(927€)

Reciprocal proposal has density

exp {— (02 — W12(01,v1-2))%/2e} y ‘3‘111_@(91,01_&)
3(91,’01H2)

2me

by the Jacobian rule.
Thus Metropolis—Hastings acceptance probability is

(Mg, 02) ‘3‘?1%2(917111%2)

1A
7T(5m17 91) <,01—»2(U1—>2) 6(917 U1—>2)

Does not depend on €: Let £ goto 0
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Interpretation (2): saturation

[Brooks, Giudici, Roberts, 2003]

Consider series of models M1, (i = 1,..., k) such that

max dim(9M;) = Npax < 00
1

Parameter of model M; then completed with an auxiliary variable U; such that

dim(6;, u;) = nmax and  U; ~ q;(u;)

Posit the following joint distribution for [augmented] model 90t;
(M, 6;) i (wi)

: no varying dimension anymore since (91», ui) of fixed dimension.
Three stage MCMC update:
Intro/Green/Point Pro

Example 40 —Mixture of normal distributions—

k
My 0 > pinN ik, 03y)

j=1
[Richardson & Green, 1997]
Moves:
@i). Split
Dik = Pjk+1) T PG+1)(k+1)
Pjktjk = Pi(k+1)Hj(k+1) T PG+1)(k+1)H(G+1) (k+1)
ij%zk = pj(k+1)032'(k+1)+p(j+1)(k+1)0(2j+1)(k+1)

(ii). Merge (reverse)

237 Intro/Green/Point Pro 238

1. Update the current value of the parameter, 6;;
2. Update u; conditional on 6;;

3. Update the current model from 91, to 91; using the bijection

(0, u;) = Winj (05, us)

239 Intro/Green/Point Pro 240

Additional moves for empty components (created from the prior
distribution)

Equivalent

(). Split
uy,uz,ug ~ U(0,1)

, - wins
(T) Pj(k+1) 1Pjk
Hj(k+1) = U2ljk
Tjeer) = U
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Histogram of k

Normalised enzyme dataset

00 01 02 03 04

Rawplot of k

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

Figure 2: Histogram and rawplot of 100, 000 k’s produced by RIMCMC under the
imposed constraint k < 5.
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Example 41 —Hidden Markov model—

P(Xt+1=j|Xt:Z) = Wy,

wi; = Wz’j/zwiz, \)_(y @
¢

YilXe =i ~ N(wi,o?).

Figure 3: DAG representation of a simple hidden Markov model
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Move to split component j, into j; and jo:

Wij, = Wij, €, Wij, = wij, (1 —€3), & ~U(0,1);

wirj = wi.i& Wiaj = wi.i/&, & ~ 1og N(0,1);
similar ideas give wyj, j, etc.;
'ujl = ILLJ* - 30-.7*8#’ ILLJZ = u]* + 3o-j*€ll«7 EN ~ N(()? 1)7
2 2 2 2
95 = O-j*ga’ Oj, = Uj*/507 §o ~ IOgN(Q 1)'
[Robert & al., 2000]
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Example 42 —Autoregressive model—
Typical setting for model choice: determine order p of AR(p) model

Consider the (less standard) representation

p
[[-xB) Xi=e, e ~N(0,0%)

i=1
where the \;’s are within the unit circle if complex and within [—1, 1] if real.
[Huerta and West, 1998]

Roots [may] change drastically from one p to the other.
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I I I
0 10000 20000 30000 40000

0.5 =

o T
0 50000 100000 150000 200000

0.005 jrwinmey oy sty oo ‘

L L L
o] 5000 10000 15000 20000

Figure 4: Upper panel: First 40,000 values of k for S&P 500 data, plotted every 20th sweep.
Middle panel: estimated posterior distribution of k for S&P 500 data as a function of number

of sweeps. Lower panel: o1 and o2 in first 20,000 sweeps with k = 2 for S&P 500 data.
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AR(p) reversible jump algorithm

Uniform priors for the real and complex roots /\j,
BRI » SRS 1n,
[k/2] +1 )\E[R 9 [Ail<1 )};[R T [Xi]<1
and (purely birth-and-death) proposals based on these priors
o k— k+l
® k— k+2
o k— k-1

e k— k-2



Intro/Green/Point Pro 249 Intro/Green/Point Pro 250

p—
=
=
=
—
—
=2

7.3 Birth and Death processes

4

0123

Use of an alternative methodology based on a Birth—&-Death (point) process
[Preston, 1976; Ripley, 1977; Geyer & Mgller, 1994; Stevens, 1999]

00 02 04

04

Idea: Create a Markov chain in continuous time, i.e. a Markov jump process,

b3
04 02 o0 0z 04
b3
mean 0.997
T
0o 10 11 12

moving between models 901, by births (to increase the dimension), deaths (to

) o . ) ) decrease the dimension), and other moves.
Figure 5: Reversible jump algorithm based on an AR(3) simulated dataset of 530 points

(upper left) with true parameters «; (—0.1,0.3, —0.4) and 0 = 1. First histogram associ-
ated with p, the following histograms with the «;’s, for different values of p, and of 02. Final

graph: scatterplot of the complex roots. One before last: evolution of a1, g, 3.
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Time till next modification (jump) is exponentially distributed with rate depending on
current state

Remember: if &1, ..., &, are exponentially distributed, &; ~ E(A;), Balance condition

Sufficient to have detailed balance
i L(0)7(0)q(0,0") = L(6')7(6')q(6',0) foral 6,6
Difference with MH-MCMC : Whenever a jump occurs, the corresponding move is for 7(6) < L(0)m(0) to be stationary.

always accepted. Acceptance probabilities replaced with holding times. Here q(0 9/) rate of moving from state 6 to o'
, .

Implausible configurations Possibility to add split/merge and fixed-k processes if balance condition satisfied.

L(0)7(6) < 1

die quickly.
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Example 43 —Mixture modelling (cont'd)—
Stephen’s original modelling:

e Representation as a (marked) point process

P = {{pja(ﬂja%)}}

J

Birth rate \o (constant)

Birth proposal from the prior

Death rate d;(®) for removal of point j

e Death proposal removes component and modifies weights
e Overall death rate
k
6;(®) = 6(®)
Jj=1
Intro/Green/Point Pro
Stephen’s original algorithm:
Forv =0,1,---,V
t—wv
Runtillt > v +1
L(<I>|<I>,-) Ao
1. Compute §,;(P) = ——22 =

)
2.6(®) — D 85(®;). & = Xo +8(®), u~ U((0,1])

3. t—t—ulog(u)

253
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e Balance condition

(k+1) d(@ U {p. (1.0)}) L(2 U {p (1:0)}) = W L(®)

with
d(®\ {pj, (1, 05)}) = 6;(®)
e Case of Poisson prior k ~ Poi(A1)

5,(®) = Ao L(® A\ {pj, (15, 95)})

Y L(®)

Intro/Green/Point Pro

4. With probability 6 (®) /£
Remove component j with probability 3, (®) /5 (P)

k—Fk—-1
pe —pe/(1—pj) (L#])
Otherwise,

Add component j from the prior (15, 0 ;)
pj ~ Be(y, kv)
pe —pe(1—pj) (£#])
k—k+1
5. Run I MCMC(k, 3, p)

m(k)

254
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Rescaling time

In discrete-time RIMCMC, let the time unit be 1/, put
ﬁk:/\k/N and 5k:1_)\k¢/N

As N — 00, each birth proposal will be accepted, and having k£ components births
occur according to a Poisson process with rate Ax while component (w, gzﬁ) dies
with rate

. 1 e
]\}E}r{l}o N5k+1 X m X Hlln(A 17 1)
1 /Bk‘ % b(w7¢)

= lim N X likelihood ratio™* X

N —o0 k+1 6k+1 (1 — U))kfl

A b
= likelihood ratio " X k:fl “a wal;)djc)—l'

Hence “RIMCMC —BDMCMC" . This holds more generally.

Intro/Green/Point Pro

Wind intensity in Athens

" S

Figure 6: Histogram and rawplot of 500 wind intensities in Athens

Intro/Green/Point Pro

Example 44 —HMM models (cont'd)—

Implementation of the split-and-combine rule of Richardson and Green (1997) in

continuous time

Move to split component j, into j1 and ja:
wij, = wij, €, wij, = wij, (1 =€), € ~U0,1);
Wi = W85y Wiaj = wjj/&, & ~1og N(0,1);
similar ideas give wj, j, etc.;
Mg, = Mj, — 304, €y Mgy = phj, + 305, €, € ~ N(0,1);

0-.721 :sz*é.‘h 0]22 :UJQ‘*/&;, €U NlOgN(O,l)

[Cappé & al, 2001]

Intro/Green/Point Pro

el s

Log likelihood values

Number of moves

znHHHHDHHHHHEHHHH@WZ

Number of maves
510 2 s

Figure 7: MCMC output on k (histogram and rawplot), corresponding loglikelihood
values (histogram and rawplot), and number of moves (histogram and rawplot)
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I
0.6
!

n

00 02 04 06 08 10

IMJWHWW“ R MHJ(V I

1000 1500

B 80 AR ::

0 500 -5 0 5
Figure 8: MCMC sequence of the probabilities 7; of the stationary distribution (top) Figure 9: MCMC evaluation of the marginal density of the dataset (dashes), com-
and the parameters o (bottom) of the three components when conditioningon k = 3 pared with R nonparametric density estimate (solid lines).
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Even closer to RIMCM

Exponential (random) sampling is not necessary, nor is continuous time!

Estimator of 1. T,, time of the n-th jump of {A(¢)} with Tp, = 0

5= /g(g)ﬂ(g)dg 2. {5n} jump chain of states visited by {6(¢)}
by 3. \(0) total rate of {0(t)} leaving state 6
N ~
i Z Then holding time T}, — T),—1 of {6(¢)} in its n-th state 6,, exponential rv with rate
N T A(0,)

where {6(t)} continuous time MCMC process and 71, . . . , Ty sampling instants.
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Example 45 —Mixture modelling (cont'd)—

Comparison of RIMCMC and CTMCMC in the Galaxy dataset

Rao—Blackwellisation ,
[Cappé & al., 2001]

If sampling interval goes to 0, limiting case

e Same proposals (same C code)

Q>

Zgan Tnl)

n=1 o Moves proposed in equal proportions by both samplers (setting the probability

PF of proposing a fixed k move in RIMCMC equal to the rate nF at which

Rao—-Blackwellisation argument: replace j with
g P e fixed k moves are proposed in CTMCMC, and likewise PP = n® for the birth

N N
~ 1 0,,— ~ ~ moves)
G S W) LS i, 1 (] 0B
N = A(On-1) A e Rao-Blackwellisation
Only simulate jumps and store average holding times! e Number of jumps (number of visited
configurations) in CTMCMC == number of iterations
of RIMCMC

Intro/Green/Point Pro 267 Intro/Green/Point Pro

RJ (5 000 it.) RJ (50 000 it.) RJ (500 000 it.)
03I ITE 0.3 T+ 0.3 N
% | H : N Qé g,%
. 8 o2 ! ! 0.2 [ 0.2 +
e |f one algorithm performs poorly, so does the other. (For RIMCMC g L ;H‘* + Ei ?
- 1TnE +
manifested as small A’s—birth proposals are rarely accepted—while for % 01 H} | ng o1 é ?; 01 ; i
a 1
BDMCMC manifested as large §’'s—new components are indeed born but die = g% o gﬁgg It L Feal
o [} 0 -
2

2 4 6 8 10 12 14 4 6 8 10 12 14 2468101214

again quickly.)

CT (5 000 it.) CT (50 000 it.) CT (500 000 it.)

03T 03 T 0.3
e No significant difference between samplers for birth and death only £ THH | gé i%
= | 1+
§ oz2f ‘ : B 0.2 L 0.2 z
e CTMCMC slightly better than RIMCMC with split-and-combine moves s ! lggi N ﬁ .
oot £l ! ! 01} | 1 0.1 .
. . . . . 3 ;H s b o
e Marginal advantage in accuracy for split-and-combine addition s %ﬁ‘ Eétfié " %&*“ . e,

e For split-and-combine moves, computation time associated with one step of

continuous time simulation is about 5 times longer than for reversible jump

2 4 6 810 12 14
k

2 4 6 81012 14
k

L4 6 sioizia
k

Figure 10: Galaxy dataset, box plot for the estimated posterior on k obtained from 200 inde-
pendent runs: RIMCMC (top) and BDMCMC (bottom). The number of iterations varies from 5
000 (left), to 50 000 (middle) and 500 000 (right).

simulation.
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Figure 11: Galaxy dataset, box plot for the estimated posterior on k obtained from 500 inde-
pendent runs: Top RIMCMC and bottom, CTMCMC. The number of iterations varies from 5

posterior probability

posterior probability

o
w

o
N

o
o

<}

0.3

0.2

0.1

RJ (5 000 it.) RJ (50 000 it.)
+ i 0.3 T
! ik
! i 0.2 P
\‘:H:%' !
. + +
! - * +
| | ! él
:ilEE%i ot E l;
L 3
FY lLLél iy oLt %gié.ﬁ‘
2 4 6 8 10 12 14 2 4 6 8 10 12 14

000 (left plots) to 50 000 (right plots).

Prop/Slice/Kac’s

8.1 Propp and Wilson’s

CT (5000it) CT (50 000 it.)
+ T 0.3 —
* i Eé
VU PLE
+\ 1! + 0.2 1$é|
ERL o
i :¢‘9§ o1 i E
0 0 '
i I ll%—léi -y o Lp B L %%§=$++
2 4 6 8 10 12 14 2 4 6 8 10 12 14
k k

Difficulty devising MCMC stopping rules:

when should one stop an MCMC algorithm?!

[Robert, 1995, 1998]
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Monte Carlo Methods/October 13, 2003

8 Perfect simulation

Prop/Slice/Kac’s

Coupling from the past (CFTP): rather than start at ¢ = 0 and wait till £ = 00,

startat{ = —oo and wait till £ = 0

CFTP Algorithm

[Propp & Wilson, 1996]

1. Start from the m possible values at time —¢
2. Run the m chains till time O (coupling allowed)

3. Check if the chains are equal at time 0

4. If not, start further back: ¢ «— 2 * t, using the same random numbers at time

already simulated

270
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Example 46 —Beta-Binomial—

Random mappings 6 ~ Beta(r, 3) and X|0 ~ Bin(n,0),

Equivalent formulation with joint density

71'(37, 0) x (n) Hac-i-a—l(l _ Q)n—z-i—ﬂ—l
Fort =—1,—-2,..., x

and posterior density
1. Simulate a random mapping v/ from each state to its successor

Olx ~Beta(a + 2,6 +n —x
2. Compose with the more recent random mappings, ¥y t' > t | ( P )

U, =W,y 0y Gibbs sampler

3. Check if U, is constant 1 bp1 ~ Beta(a + 2, 0 +n — 7y

2. Xt+1 ~ Bin(n, 0t+1)-

Prop/Slice/Kac’s 275 Prop/Slice/Kac’s 276

n=2 a=2and 8 = 4.
State space

Transition kernel X = {07 L 2} :
n _ Transition probabilities
f((mt-i-la 9t+1)|($ta gt)) o <x >9zt+1+a+zt 1 p
i TP Pr(0+—0) = .583, Pr(0— 1)=.333, Pr(0— 2)= 083,
1— —Tt=ZTep1— 1
( ) Pr(l—0) = .417, Pr(1+—1)=.417, Pr(l+~— 2)=.167,
Pr(2—0) = .278, Pr(2—1)=.444, Pr(2—2)=.278
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2. 2 2. 2
1& 1 1§ 1
030 0—>0

upy1 < .278 w1 € (0278,.417)
2. 2 2. 2
1> 1 1>: 1
0— 0 o 0

ui+1 € (1417,.583) w41 € (.583,.722)

2— 2 2— 2 2— 2
1—1 1/ 1 17 1
O/ 0 O/ 0 0 0]

urgr € (.722,.833)  wupyq € (.833,.917) Ury1 > 917

All possible transitions for the
Beta-Binomial(2,2,4) example

Prop/Slice/Kac’s

The chains have not coalesced, so go to time t = —2 and draw U_1. Suppose
U_1 € (.278,417).

2 \2 2
1 \1 /1
0O — "0 /0
t=—2 —1 0

277
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Prop/Slice/Kac’s

Begin at time ¢ = —1 and draw Uy. Suppose Uy € (.833,.917).

1 ? 1
0 0
t=—1 0
Prop/Slice/Kac’s
The chains have still not coalesced so go to time ¢ = —3. Suppose

U_y € (.278, 417).

All chains have coalesced into Xy = 1. We accept X as a draw from 7 . Note
that even though the chains have coalesced at ¢ = —1, we do not accept
X_1 = 0 as adraw from 7.

278
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Extension to continuous chains

e Multigamma coupling

[Murdoch & Green, 1998]

e Find a discretization of the continuum of states (renewal, small set,

accept-reject, &tc...)

® Run CFTP for a finite number of chains

Prop/Slice/Kac’s

Data Augmentation Gibbs sampler:

At iteration ¢:

1. Generate niid U (0, 1) rv's ugt), . 7u§:').

2. Derive the indicator variables z\") as zi(t) = 0 iff

i

(t) P fola)

and compute

i=1

3. Simulate p(f) ~ B@(n +1— m(t)’ 1+ m(f))

M) <
©T U fo(ag) + (1= plt) f ()

281
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Prop/Slice/Kac’s

Example 47 —Mixture models—

Simplest possible mixture structure

pfo(z) + (1 —p)fi(=),

with uniform (or Beta) prior on p.

Prop/Slice/Kac’s

Corresponding CFTP :

At iteration —t:

1.

2.

. For each [q;;;

0,

Generate 1 iid uniform rv's u
Partition [0, 1) into intervals [q(;1, ¢j+1])-

(=6) qufﬁ] ), generate
P ~ Be(n—j+1,5 +1).

(=t) (=)

. Foreachj =0,1,...,n,r; —p;

For(0=1,0<T, L+ +) PO p;ﬂ—t-&-é) with k such that

J

(—t+e—1) <—t+z>]

(—t+0)
"5 €lap ) Gy

. Stop if the rﬁ»o)’s (0 < j < n) are all equal. Otherwise, ¢ «— 2 x t.
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Duality Principle and marginalisation

Finite number of starting chains more obvious in the finite state space!

Equivalent version based on the simulations of the (n + 1) chains m® started from all

possible valuesm = 0,...,n

Prop/Slice/Kac’s

Coupling between chains

Follows from the Be(m + 1,n — m + 1) representation:

1. Generate n + 2 iid exponential Exp(1) rvs wi, . . . , Wno.

2. Take

Pool of exponentials w; common to all chains

285
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Prop/Slice/Kac’s

n =495

1.0

10

08

0.6

04

0.2

0.0

-60 -40 -20 o 0.0 0.2 0.4 0.6 0.8 1.0

(10000 iterations)

Figure 12: Simulation of n = 495 iid rv's from .33 NV (3.2, 3.2) + .67 A/ (1.4, 1.4) and
coalescence att = —73.

Prop/Slice/Kac’s

Monotonicity & CFTP

Assumption of a partial or total ordering on the states
e Quest: maximal/majorizing and minimal/minorizing elements, 0and 1
e Request: Monotone transitions (Stochastic versus effective)
e Conguest: Run only the chains that start from Oand 1

Reduces the number of chains to examine to 2 (or more) Often delicate to implement in
continuous settings
[Kendall & Mgller, 1999a,b,...]

Works in the 2 component mixture case (thanks to Beta representation trick!)
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Case k = 3

Gibbs sampler:

1. Generate u1, ..., u, ~ U(0,1).
2. Take
- puf1(zi) )
ny = E I{u < , i =
£ ( p1f1(-73¢) T+ p2f2(-Ti) T pgfg(l’i) CFTP can be implemented as for k = 2
n But (n + 2)(n + 1)/2 different values of (n1, n2, ng) to consider
Z { ( ) p1fi(xi) )
no I u > )
=1 p1fi(xi) + p2f2(xi) + psfa(z:) No obvious monotone structure

, pLf1(xi) + p2fo(i) )}
“ (uz = pifi(xi) +p2fo(as) +psfs(xi) ) |

andns =n —ni — na.

3. Generate (p1,p2,p3) ~ D(n1 + 1,n2 + 1,n3 + 1).

Prop/Slice/Kac’s 291 Prop/Slice/Kac’s

Lozenge monotonicity

Towards coupling The image of the triangle

) - o T = {(n1,n2);n1 +n2 <n}
Representation of the Dirichlet D(n1 + 1,2 + 1, n3 + 1) distribution : if

by Gibbs is contained in the lozenge
Wily - - - ,wl(n+1),w21, - ,w3<n+1) ~ Sxp(l) 5

th L={(ni,n2);n; <niy <7y, n2 >0, ny <n—ny—nz <ng},
en

( Z;n:liH wiq Z:Ljf—l w2 Z?jfl Ww3iq ) where
3 n;+1 ’ 3 n;i+1 ’ 3 n;+1

Zj:l doil1 Wi Zj:l doill Wi Zj:l dil1 Wi

isaD(n1 + 1,n2 + 1,n3 + 1) rv..

e 1, is min n1 over the images of the left border of T
e T3 is the n3 coordinate of the image of (0, 0),
e 71 is the ny coordinate of the image of (n, 0),

Common pool of S(n + 1) exponential rv's. ® ngsis min n3 over the images of the diagonal of 7.
[Hobert & al., 1999]
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Lozenge monotonicity (explained)

For a fixed no,

no—+1 ni+1 n—mi—ng+1 ny+1
2 3
S /Y e B Y wa /Y
p1 i=1 i=1 D1 i=1 i=1
are both decreasing in n1.
Sois
n -1
zi)+ T;
m1:ZH u; < |:1+p2f2( ’L) p3f3( 1):|
pt p1f1(xs)
Prop/Slice/Kac’s 295

Lozenge monotonicity (preserved)

The image of L is contained in
L' = {(m1,mz2);m, <mi <m1,me >0, mg <ms <ms},
where
e m, is minn; over the images of the left border {n; = n,}
e 71 is max n; over the images of the right border {n1 = 71 }
® M, is min n3 over the images of the upper border {n3 = Qg}

e T3 is max ng of the images of the lower border {n3 = 73}

Prop/Slice/Kac’s

Figure 13:
62N (1.4,0.49) + .15 NM(0.6,0.64)

Prop/Slice/Kac’s
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Lozenge monotonicity (completed) B v
. ) ) O 0~ o 2o~
e Envelope result: generation of the images of all points on the borders of £ s “:" s }‘ s },, 7‘
[Kendall, 1998] I | F o L
s N i
e O(n) complexity versus O(n?) for brute force CFTP B B “ ’ “ T
El ™ 2 r\\\ 2 e
e Checking for coalescence of the borders only : almost perfect ! : i : } : } }
s a{ | sl | |
|
e Extension to k = 4 underway NN : L : L\J
[Machida, 1999] ) 5w w e e = R B T w

Figure 14: n = 63 observations from .12 NV'(1.1,0.49) + .76 N/(3.2,0.25) +
12N(2.5,0.09)

Prop/Slice/Kac’s 299 Prop/Slice/Kac’s 300

Interruptable version

Proof

Fori i L if j h ke “too long”, this gi i I
or impatient users: if we just stop runs that take “too long”, this gives biased results Need to prove Pr[Xo = z|Cr(2)] = 7 (z)

Fill's algorithm:

Pr[Xy = z|Cr(2)] =
1. Choose arbitrary time 7" and set x1 = 2 Pr[z — z] Pr[Cr(z)|z — Z]
> Prlz — 2] Pr[Cr(2)|2" — 2]

2. Generate X7_1|xr, X7_o|zr_1, ..., Xo|21 from the reversed chain
!/
3. Generate [Uy|zg, 1], ..., [Ur|zr_1, 7] Now for every
4. Begin chains in all states at 7" = 0 and use common U1, ..., Ur to update all Pr[Cr(z)|z" — 2] =
chains Pr[Cr(z)and 2’ — 2] Pr[Cr(z)]

_ _ Pr[z’ — 2 Pr[a’ — 2]’
5. If the chains have coalesced in z by T, accept zg as a draw from 7 [ ] [ ]

B !/ — T !
6. Otherwise begin again, possibly with new 7" and z. and, since Pr[z’ — 2] = K (2, 2),

_ _ KT(z,2)Pr[Cr(2)]/KT (2, 2)
[Fill, 1996] PriXo = 2Cr()] = Yow KT (2,2") Pr[Cr(2)]/ KT (2!, 2)
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KT (z,2)/KT(x,2)
Do KT(z,2')/KT(2/,2)’

Using detailed balance,
K" (z,2) /K" (x,2) = n(z) /7 (2),

and thus,

Pr[X, = 2|Cr(2)] = ’W = ().

Prop/Slice/Kac’s

Suppose

301 Prop/Slice/Kac’s 302

Example 48 —Beta-Binomial—

Choose T' = 3 and X7 = 2.

Reversible chain, so
Xo|X35=2 ~ BetaBin(2,4,4)
X1|Xo=1 ~ BetaBin(2,3,5)
Xo|X1 =2 ~ BetaBin(2,4,4)

303 Prop/Slice/Kac’s 304

ngl, X1:0, XQZ]. and X3:2
imply

Uy ~ U(0,.417), Uy ~ U(.583,.917), Us ~ U(.833,1)
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Suppose
Uy € (.278,.417) U,y € (.833,.917) Uz > 917

Begin chains in states 0, 1 and 2.

"2

L
.

/)

t=0 t=1 t=2 t=3

The chains coalesce in X3 = 2; so we accept Xy = 1 as a draw from 7.

Prop/Slice/Kac’s

Properties

Slice samplers do not require normalising constants
Slice samplers induce a natural order

If 7r(w1) < ’/T(Ldz)

Ay ={w; m(w) > un(wz)} C A1 = {w; m(w) > um(wi)}

Slice samplers induce a natural discretization of continuous state space
[Mira, Mgller & Roberts, 2001]

305
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Prop/Slice/Kac's

8.2 Slice sampling

Remember that slice sampling associated with 7w amounts to simulation from
U({w; m(w) > um(wn)})

and u ~ U([0, 1])

Prop/Slice/Kac's

Slice samplers preserve monotonicity

1. Startfrom 0 = arg min 7(w) and 1 = arg max 7(w)
2. Generate U_¢, ..., Ug
3. Get the successive images of Ofort = -T7,...,0

4. Check if those are acceptable as successive images of 1

If not, generate the corresponding images

306
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But slice samplers are real hard to implement: for instance,

n k

U0 T D pif(ai|6)) > e

i=1j=1

is impossible to simulate

Prop/Slice/Kac’s

Use the slice sampler on the marginal posterior of z
e Finite state space
e Link with Rao—Blackwellisation

e Perfect sampling on z equivalent to perfect sampling on ¢

309 Prop/Slice/Kac's 310

Duality principle

Dual marginalization: integrate out the parameters (Q,p) in

Zve | X~ ﬂ-(avp) szlf(x1 | 021)

=1

Easily done in conjugate (exponential) settings.

311 Prop/Slice/Kac's 312

Example 49 —Exponential example ( k£ = 2, p known)

Joint distribution

k
1_[[)(1 Z)(1 = py)* A, exp(—A., ;) H B CXp —X;05)
i=1 j=1
leads to

F(Oé() + ng — 1)F(O¢1 +ny — 1)
(Bo + s0)@0tno(By 4 sp)rtn

z|x~p"(l—-p™
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e Closed form computable expression (up to constant)
e Factorises through (10, sq ), sufficient statistic
e Maximum 1 and minimum O can be derived

But... slice sampler still difficult to implement
because of number of values of sg : ( i )

no

Still, feasible for small values of n (n < 40)

Prop/Slice/Kac’s

Perfect sampling is possible!

Idea: Use Breyer and Roberts’ (1999) automatic coupling:

If
) (o) (21 lye)
~ T fur < —m— @0
L0 = ) v~ aller) it s See )
xgt) otherwise.
generate

(t))..()

ify, < Twoalzs Tl )

0 Y L r@l) ayel= )

(t)

Ty’ otherwise.

(©)

313 Prop/Slice/Kac's

314

s0
20
I

10
I

315 Prop/Slice/Kac's

Fixed ng, 40 observations

316

Theorem In the special case

(t)

if (z;) starts from

if (xét)) starts from

q(ylz) = h(y),

0 = argmin 7 /h,

1 = argmaxr/h,

the coupling (3) preserves the ordering.

[Now, this is a result from Corcoran and Tweedie!!!]
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Example When state space X’ compact,

2000 1500 1000 “500, °

use for h the uniform distribution on X’.

Extremal elements 0 and 1 then induced by 7 only. Coupling history

: . 0 . s
Implementation: start from arbitrary value for :cg ) and keep proposing for -
0 ~
xé ) =1 .
&8
Corresponding likelihoods
Prop/Slice/Kac’s 319 Prop/Slice/Kac's 320

Reason:

When coupling occurs, xgt) = s,

Back to Basics!

R ) ),
When X’ compact, and 7(z) < 7(1), independent Metropolis-Hasting coupling is Ut = (1) T max

accept-reject , based on uniform proposals o . ) ) )
and therefore the chain is in stationnary regime at coupling time.

This extends to the general case, with accept—reject based on proposal h.
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In this case, the accept-reject algorithm could have been conceived independently

from perfect sampling (?)

while Fill's (1998) algorithm is an accept-reject algorithm in disguise, but it could not

have been conceived independently from perfect sampling

Prop/Slice/Kac’s

Stability (1)

If K1 and K5 are recurrent kernels, the mixture kernel

K3 is recurrent.

321

323

Prop/Slice/Kac’s 322

8.3 Kacs' formula

Consider two Markov kernels K1 and Ko

What of the mixture

Prop/Slice/Kac’s 324

Stability (2)

If K1 and K5 define positive recurrent chains with the same potential
function V/, thatis, there existasmallset C, A < 1,V > 1and V bounded
on (' such that

Ex,[V(@)ly] = AV (y) + blc(y)

then the mixture kernel K3 is also positive recurrent.
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Stationary measure

If 1y = 7o and K3 is positive recurrent, 71 is its stationary distribution.
Otherwise...

Special case: K7 is aniid kernel 1. Then

Kz =pm + (1 -p)K>

Prop/Slice/Kac’s

Special special case: K3 is uniformly ergodic:
Kg(flf,y) Z€V(y), vaX?

Mixture decomposition:

K3(l‘,y) = Elj(y) + (1 _ E) K3(-Ta1y)_—5 €V(y)

= ev(y) + (1 —¢e)Ka(x,y)

Representation of the stationary distribution:

+oo

Z e(1—¢)'Piv,

=0

where P is associated with K

325 Prop/Slice/Kac’s 326

No assumption on K (it can even be transient!) but, still,

Theorem 3 K3 is positive recurrent with stationary distribution

“+oo

ms =Y (1—p)'p Psm,
=0

when P2i7r1 is the transform of 71 under 7 transitions using Ko.

327 Prop/Slice/Kac’s 328

1. Simulate g ~ v, w ~ Geo(g).

2. Run the transition 211 ~ Ko(z¢,y) t =0, ,w — 1,
and take x,,.

[Murdoch and Green, 1998]



Prop/Slice/Kac's

General case

Minorizing condition

Ks(z,y) = ev(y)lc(z)

Splitting decomposition

[MNRZ]

K3(£7y) =

{evtn) + 1 - 0 BEDZO 10 4 Koot )

= Hev(y) + (1 —e)Ka(x,y) e (y) + Ks(z,y)lce(y)

K is the depleted measure of K3

Prop/Slice/Kac’s

[Nummelin, 1984]

1. Simulate X,, ~ K3(z—1, *)

2. Simulate d,,—1 conditional on (z,,—1, x,,)

Pr(6p—1 = 1zp_1,2n)

B ev(xy)
K3(5En—17 xn)

[Mykland, Tierney and Yu, 1995]

329
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Introduction of the split chain ®* = {(X,,, 0,) }n, on X x {0, 1}, with transition

kernel
P le0), Axs =) 0T A -0 Kl 4) wgC
0+ (1—¢e)(1—-0)]Ky(x,A) ze€C
and
P'[(z,1),A x 8] = 6+ (1—e)(1 — )] Ks(z,4) z¢C
[€d + (1 —¢)(1—8)]v(A) ceC

where ¢ € {0, 1} (renewal indicator)
[Athreya and Ney, 1984]

Then e := C' x {1} is an accessible atom

Prop/Slice/Kac’s

General Mixture Representation

Let 7, be the first return time to «
To =min{n >1:(X,,d,) € a} .

and

Pr(-) and Eu(:),

(e}
probability and expectation conditional on (X, dg) € «
Tail renewal time T

Pr(T* = 1) = Pr%f{;j ‘)

If the chain is recurrent, E, (7,) < 00

330
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Monte Carlo Methods/October 13, 2003

Theorem 4 If (Xn)n is p-irreducible, aperiodic, and Harris recurrent with
invariant probability distribution 7, with a minorization condition [MNRZ], then

oo
m(A) = Pr(N; € A)Pr(T* =1)
t=1
where Ny is equal in distribution to X given X; ~ v(+) and given no

regenerations before time 7.
Follows from Kac's theorem

1
>
m(A) = 71[‘:(1(7&) ;:1 Pro (X € A, 7o > t)

Can be extended to stationary measures

Adaptive { Basics/ChoicelGoaIlErgodicin?}/Performances/AdaptationlIIlustrations

9.1 Adaptive MCMC algorithms

How to efficiently estimate

ﬂm—Ah@fwm

with an MCMC based estimator

w (W)= g S ) ?
=0

[Andrieu & Robert, 2002]

)
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Monte Carlo Methods/October 13, 2003

9 Controlled MCMC algorithms

Adaptive{ Basics/Choice/Goal/Ergodicity?}lPerformances/Adaptation/IIIustrations

Metropolis-Hastings algorithm

Given that the Markov chain is at &, proposal distribution

Then the Markov chain

ylz ~ q(z,y)

1. goes to y with probability

2. Otherwise stays at .

334
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The choice of ¢

Key to the success of the MCMC approach.

Typically ¢ depends on a parameter

q=4qe

Adaptive: { Basics/Choice }/Performances/Adaptation/lllustrations

Example 51 —Mixture of kernels

k
Zwiﬁi( )
i—1

depends on the weight vector § = (wl, ... ,wk) for its efficiency (model choice,
blocking, etc.)

337
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Adaptive:{ Basics/Choice }/Performances/Adaptation/lllustrations

Example 50 —Symmetric Gaussian random walk—

g (z,) = \/217? exp (2912 (y— x)2>

variance of J v (h) large for values of 6 either too small or too large.

Adaptive:{ Basics/Choice }/Performances/Adaptation/lllustrations

Example 52 Choice of a auxilliary parameter in a completion scheme

1@ = [ wlo.0)a:

338
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Goals

1. We want to choose 8 in an “optimal ” manner (to be defined below!)

2. We want this choice to be automatic

3. We want to use a single run of the algorithm

Adaptive:{Bagucsx‘chmcef’Goah’Ergodicity?}/PerformanceslAdaptationlIIlustrations

Updating scheme preserving ergodicity proposed in Gelman et al. (1995).
e Relies on the notion of regeneration

e Theoretically valid, but practically difficult to apply

Adaptive scale of Haario et al. (2000)
e Variance update 0(t+1) = H_%Q(t) H_%(Xt —u)( Xy — )t

e Complex (local) proof of ergodicity

341
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Potential problem

If at iteration ¢ we adjust 6 in the light of the whole past of the chain ,
Loy L1yew-yLj—1,

then it is not a Markov chain anymore.

What about ergodicity then???

Adaptive/Performances: {Accept/Correlalion/Match}lAdaptalionlIIIustrations

9.2 Performances of MCMC algorithms

Define a loss criterion/function for the evaluation of the performances of an MCMC

algorithm
n(0)

in such a way that optimum value 6, is root of

1(0) =0
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Reformulated as a minimisation problem
0, = argmin W(n(6))

where

n(0) = /X (6, 2o (de) @

Adaptive/Performances:{ Accept/Correlation }/Adaptation/lllustrations

Example 54 —Autocorrelations—

Asymptotic variance of v/ [N SN (h) approximated by its truncated version
[Geyer, 1992]

n(0) =2+ (0) = vary (h(zg)) +2 Zcov (h(zo),h(x;);0) ,

and

(0, x) = h(xg)h(xo) + 2 XT: h(xo)h(z;)’

i=1

345
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Adaptive/Performances: { Accept }lAdaplation/IIIustrations

Example 53

—Coerced acceptance—

Define an optimal acceptance rate v, and set

and

_ /X {1/\ f(y)Qe(y,x; _a*} 0 (z,

f (LL') qo ({L‘, Y

f(dy)q (y,dz; 0)

H(0,z,y) = {min {1’ f (dx) q(x,dy;0)

Adapnve/Performances:{Accem/(:on e\anon/Match}lAdaptationlIIlustrations

Example 55

—Moment matching—

Force the proposal to match some moments of the target

and

/(é(w)%)f(dx):()
X

n(0) = /X (6 (2) - 0) f (dx)

U(n) = |nf”

[Gelman & al., 1995]

y) f (z) dzdy.

o

[Haario & al., 2000]
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Adaptive/Performances/Adaptation: { Robbins/Asym’clext}/IIIustrations

9.3 Adaptation towards efficiency

How can one find the roots of
h(0) =0
when

h(9) = /Xsa(e,x) o (d) 7

In most cases of interest, it is not possible to evaluate the integral for a fixed ¢, and

one needs to resort to numerical methods

Adaptive/Performances/Adaptation: { Robbins }/lllustrations

MCMC approximation

If sampling from g difficult, introduce a family of transition probabilities Py such that

HoPo = pg
in which case
Oiv1 = 0; +7ig19 (055 2i41)
where

Tip1] (05, ;) ~ Py, (v55dxigq) .

349
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Adaptive/Performances/Adaptation:{ Robbins }/lllustrations

The Robbins-Monro algorithm

Iterative techniques called stochastic approximation  follow from the
Robbins-Monro algorithm
[Robbins & Monro, 1954]

Noisy gradient optimisation algorithm that takes advantage of the missing data

representation of h(6):
Oiv1 = 0; +vit19 (0i, zit1),

where
Tiv1|0i ~ po, (dx).
and +y; slowly drifts to 0

Adaptive/Performances/Adaptation: { Robbins/Asym’cs }Hlllustrations

Asymptotic behaviour of the algorithm

Since
Oiv1 = Oi+541h(0;) +vis1 {9 Oi;2i41) — h(0,)}
= Oi+Yit1h (0;) + Vi1 e

if the effect of the noise series {ei} “cancels out”, then the “mean trajectory” of the

algorithm is precisely that of the deterministic gradient algorithm.
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Intuition

The trajectories g, 01, . . . behave asymptotically more or less like the solutions
6 (t) of the ODE

0(t)=h(0(1)).
and the solutions of the ODE should converge to a

Many acceleration techniques and variations of the algorithm exist in literature.

Adaptive/Performances/Adaptation: { Robbins/Asym'cs/2xt Hlllustrations

Two-time scale stochastic approximation

Consider jointly
e the Markov chain of interest {z; },
e the proposal parameter 6,

and

e the transforms

5(93 LB) = ('6(9? :B), V9ﬁ(93 :U))

and apply “twice” Robbins—Monro

353 Adaptive/Performances/Adaptation :{ Robbins/Asym’cs }llllustrations

Slightly different context here: to solve
min ¥ ((0))
requires solving the first order equation

Vo{¥n®)} = 0

355 Adapt\ve/Performanceg/Adaplation:{Rohhma/Asym cs/2xl}l|l|ustrali0ns

Recursion i

Set&; = (i, 1:)

Corresponding recursive system
Tiv1 ~ R(xi,dzris1;0;)
Siv1 = (1 —7it1)& +7%i+1€(0i, Tit1)
Oip1 = i —Yigr€ir1m V' (m:)

where {;} and {¢;} go to 0 at infinity
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Intuition

Second time scale ¢; is there to slow down the evolution of the 6;'s

o if {sz} goes fast enough to 0, the overall convergence behavior [for the x;'s and
&,;’s] similar to when @ is fixed ,

e on the time scale {~;&;}, 6; still converges to the solution of

1(0)Ve®(n(0)) =0

Adaptive/Performances/Adaptation: { Robbins/Asym'cs/2xt Hlllustrations

An interesting bound

If {6; } remains bounded, there exist constants A and B such that

- N
E “3(/1) Gy (h)ﬂ < \/AN + % 3 e,
i=1

Thus if v;6; = n~ % for a € [0, 1], then, by Cesaro’s,

Zﬁvzl Vi€ N—+oo
N
the second term will asymptotically be negligible compared to the first term when
a € (1/2,1]

N—Oc
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Convergence conditions on {;} and {;}
e {~;} and {g;} go to 0 at infinity

e slow decrease to O:

Z’}/iEi:OO Z’Y?<OO

[Andrieu & Moulines, 2002]

Adapt\ve/Performﬁnces/Adaplation:{RnhbmalASym cs/2xl}l|l|ustrali0ns 360

Convergence control for controlled algorithm

Since {6; } converges to the solution of

Vo{¥(n(0))} =0
there must be convergence of
17 VU (n;)
to 0

[Convergence monitoring]



Adaptive/Performances/Adaptation/lllustrations: { Coerced/Autocor./Sto'vol' }

9.4 |llustrations

Example 56 —Coerced acceptance—

Imposed an expected acceptance probability a,, = 0.4 for a random walk MH with
target

0.21N/(=5,1) + 0.79N(5,2)

Results for 200, 000 iterations.

Adaptive/Perfor mamces/Arlamat\on/IIlustrations:{Coerced}

0.7

03¢ L L L L L L L L L
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

% N B

Figure 16: Convergence of the empirical acceptance probability for the bimodal dis-

tribution and the random walk proposal.

361 Adaptive/Performances/Adaptation/lllustrations:{ Coerced }
05 05
04 : 04

Figure 15: 3D rendering of the mixture target distribution and the proposal distribution

for the random walk example.

363 Adapt\ve/Performanceg/’AdapranomllIIuslrations:{Coerced}

45

35

30~

smoothed estimate

Figure 17: Convergence of the variance of the proposal distribution for the bimodal

target distribution.
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Adaptive/Perfor mamtos,"/\tlaptal\on/lllustralions:{Com ced/Autocor. } 365

Example 57 —Autocorrelation minimisation—

Back to

Shor (0) = vary (h () + 2 Z cov (h (z0) , h () 6)

Need of a real transform, like

U (n(0) = t(Shr(0)35,(0)
IZn,- (O]

Adaptive/Perfor mamces/Arlamatmn/lllustralions:{Coe» ced/’Autocor,} 367

Example Optimize the covariance matrix 3. of a Gaussian random walk

2

g0 (z,y) = ‘\/6277 exp <_1 (y—x) 00" (y — x))

Reparameterize as ) = 2_1/2, lower triangular matrix such that

»l =067

Acceptance probability independent from 6,

a(z,y) = min {1,

Adaptive/Performances/Adaptation/lllustrations: { Coerced/Autocor. } 366

Then
h(0) ==V ||Sh.- (0)]°

Recursion

—

Oir1=0; —vit1Vo | Zn,r )],

—
where Vg [|2), - (6)||* ‘unbiased’ estimate of Vg |2k, 0.
Adaptive/Perfor manceg/’AdapraImm/IIIuslrations:{Coe\ Ced/’Aulocor.} 368
s
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Figure 18: The target Gaussian distribution (red ellipse with center (0, 0)). The
Gaussian proposal distribution after 200, 000 iterations (blue).
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0.37]
¢ 1 036) B 05k i
A M 1 0.35] WL |
\ 0.34]
4 M\Jwy‘w/“ﬂwm 1 033 —osl J
032] o]
2
500 1000 1500 2000 2500 3000 3500 4000 160 ZO‘D 360 40‘0 560 Géﬂ 760 SO‘U 960 500 o000 900 2000 2500 8000 3800 4000
Figure 19: Convergence of parameters a and b of the bivariate Gaussian proposal Figure 20: Convergence of parameter «v of the bivariate Gaussian proposal distribu-
distribution, subsampled (1/50). tion, subsampled (1/50).
Nllustrations:{ Autocor. } 371 Mllustrations: { Autocor. }
. 5 £ A
Example Optimize the weights of a mixture kernel ° / e o Q/
R (x. dy) ! & (x, dy) }
0 \T,ay D ) 1\, ay : T
1+ 5 (03 +¢) -
p 2 5 4 3 2 . .‘l,n 2 3 4 5 =5 4 3 2 -1 . mPJSmD 1 2 3 4 5
04 _|_ € o o
+ Z : R (z,dy).
P 2 ’ . o
S 1+0 (07 +¢) 3 I
when the main direction of the Gaussian target is 7r/4. . AN .
]
o X o
Proposals are normal with orientations o = 0, £7 /4, 7w/2 and the same scale. § iL/

K3 R El 2 3 0 s I 2 3 @ 5

EY o 1 E o 1
Angle =0.7854 Angle = -0.7854

Figure 21: The target distribution and the four possible proposal densities for the mix-
ture of strategies example, along with 50 steps of the corresponding Markov chain.
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Figure 22: Evolution of the proportions of the mixture of strategies.

Adaptive/Perfor mamces/ArJamatmn/lllustralions:{Coel ced/Autocor /Sto’vol'}

MCMC

Hybrid Gibbs sampler
1. g £ ((ba /87 U?])‘{wt}
2. {zi}|€

First stage obvious
but problem with {x4 }|€
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Example 58 —Optimal blocking for SVM’'s—  Stochastic volatility model

yr = Bexp(xt/2)e,
Tip1 = Qxp+

[Shephard & Pitt, 1997]

Data {y; } and (unobserved) volatility {z; }

Adapt\ve/Performances/AdamaImm/lIIuslrations:{Coercecl/Autocor /Slo'vol’}

Block updating

Simulation based on a Gaussian approximation of the conditional distribution
f{ze}8)
Update of {z} by blocks {z¢ }+, <t<t,

Influence of the size s = t5 — ¢ [of the blocks] on convergence performances

374
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Proposal gp

1. Selectcenterc ~ U (1,...,N)

2. Generate half-length £ from (—L < ¢ < L)

e 0?)
) S (e m—0)?)

3. Define block as
B (c,f) & {(c— |¢|))modN, ..., (c+ [£|)mod N}

4. Update {z; : t € B (c,{)} conditional upon £ and block B¢ (¢, £) based on a
Metropolis-Hastings transition . ¢, with a normal proposal ¢, ¢

Adaptive/Performances/Adaptation/lllustrations: { Coerced/Autocor./Sto'vol' }

Criterion 1 : Coerced acceptance

Expected acceptance probability for updating block B (c, E):

* *
Ozc,g = / 1 A f(x |€)q0,g(zcy€|w )qc
x2L+1 (

J(@|€)ge,e(z7 ,|2)

(22 |w) f(2]§)dwdzg .
where

zNaz* = {x:t ¢ B(c L)}
el = {l’t:tEB(C:E)}

377
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Possible repetition of updates before acceptance, leading to kernel

({I,' d[lf 9 / H ch,l (9) RC,E (Zm_l, dZWL) )
xrM-1

m=1 ¢, £
where
0 1
wet (0) = e (6)
Choice of 0?
Adapt\ve/Performances/Adaptatiom/l|Iustrati0ns:{Coerced/Autocor./Slo'voI’} 380

Expected acceptance probability for updating one block:

N L
)= wer (0) ey

c=14=—L
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Loss function

and

Ologwe, (6)

00

AdaUTI\/E/PF}I'fOI'ITIaﬂCP,S/A(JaDIﬁI\OI‘I””US(raliUnSZ{COF!I ced/Autocor. /Sto’vol'}

0.8

0.6 -

0.5

0.3

0.1

Figure 23: Convergence of the empirical acceptance probability to the coerced value

a* =0.4.
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Stochastic approximation algorithm at iteration 7
1. samplec ~U(L,...,N), L~ pe(0;) and 27, ~ qe (2] 4|7)
2. Compute
f x* 5 Gec,b Z:Z[I;*
wes(nat) = 1 5 L e erla”)
f(@l€)qe,e (2% ]7)
3. Update
*
Mi+1 (L= Yi 1)1 + Vi1 @e,e(, 27)
0logw. (0;)
. . °, *
Mi+1 (L= Yig1)7i + Vit 99 We,e(x, ")
i1 Oi — YVig1€i417 (i — o)
4. Set z to =™ with probability @, ¢(x, £*)
Adapt\ve/Performances/AdamaImm/lIIuslrations:{Coerced/Aumcor/Slo'vol’} 384
5 | 1ap J
P13 1
[ 1 1 1
L 18 J
r{\ww | |
1 |
o0z 04 05 o8 12 14 16 1is 2 0z 04 05 08 i 12 14 1 18 2
x10° x10°

Figure 24: Evolution of f under coerced value o* = 0.4 (left) and o* = 0.6 (right)
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Criterion 2 : Cumulative autocovariance
Remember that
,
o2 (0) = vary (ho) + 2 Zcov (ho, hi; 0)
k=1
where hy = h (2, &)
Estimation of the roots of the equation

902 (6) _
0 0

AdaUTI\/E/PF}I'fOI'ITIaﬂCP,S/A(JaDIﬁI\OI‘I””US(raliUnSZ{COF!I ced/Autocor. /Sto’vol'}

Gradient

kM :
> [ Tt O g, ae) ]S Syl
n=1 v

ClseosCl M
L1yl

M
X H wcm’zm (9) ﬁcmvfm (mel, dzm) hoh;c
q=1

No need for the two-time scale, since gradient is directly available in integral form

385 Adaptive/Performances/Adaptation/lliustrations:{ Coerced/Autocor./Sto'vol' } 386

Autocovariance cov (hg, hi; ) at lag k involves k iterations:

k
> [ rtamdo) TS £yl
p=1

Cl,Cz,...,CkM
L1,€2,... Lk

M
X H ow,lm (9) 'ﬁcmy‘enz (Zm_17 dzm) hoh;ﬁl

q=1

where m = (p — 1)M + q, z0 = xo and 2 = 2k

387 Adaptive/Performances/Adaptation/lllustrations: { Coerced/Autocor./Sto'vol } 388

Stochastic approximation algorithm at iteration 7

1. Setw =0

2.Form=1,...,7
Update &
Forn=(m—-1)M+1,...,mM
Update B (¢, £,) where ¢, ~ U(1, N), £, ~ pg (60;)

Ologwe,, ¢, (0)

w—w+ 56

i

gm — w X hohl,

3. 0it1 = 0i = Vit1 Dy Gm
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10 L L L L L L L L L

x 10

Figure 25: Convergence of 6 for the autocovariance criterion for 72 = 25 and n=
5.
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0.5 —

0.4 —
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0.2 —
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Figure 27: Convergence of the empirical acceptance probability for the autocovari-
ance criterion for 72 = 25 and 1 = 5.

0.2
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Figure 26: Convergence of the smoothed estimated gradient
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