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Université Paris Dauphine and CREST-INSEE

http://www.ceremade.dauphine.fr/∼xian

22 mars – 19 avril 2007

http://www.ceremade.dauphine.fr/~xian


Stochastic Volatility An experimental approach

Outline

Stochastic volatility model

The Metropolis-Hastings Algorithm

The Gibbs Sampler

Monte Carlo Integration

Sequential importance sampling



Stochastic Volatility An experimental approach

Stochastic volatility model

Stochastic volatility model

Stochastic volatility model

The Metropolis-Hastings Algorithm

The Gibbs Sampler

Monte Carlo Integration

Sequential importance sampling



Stochastic Volatility An experimental approach

Stochastic volatility model

Latent structures make life harder!
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f⋆(x, x⋆|θ) dx⋆



Stochastic Volatility An experimental approach

Stochastic volatility model

Latent structures make life harder!

Even simple models may lead to computational complications, as
in latent variable models

f(x|θ) =

∫
f⋆(x, x⋆|θ) dx⋆

If (x, x⋆) observed, fine!



Stochastic Volatility An experimental approach

Stochastic volatility model

Latent structures make life harder!

Even simple models may lead to computational complications, as
in latent variable models

f(x|θ) =

∫
f⋆(x, x⋆|θ) dx⋆

If (x, x⋆) observed, fine!
If only x observed, trouble!
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Stochastic volatility model

Stochastic volatility

Observables
yt

ind∼ N (0, σ2
t )

with unobserved variances related by

log σ2
t+1 = µ+ ̺ log σ2

t + τεt εt
iid∼ N (0, 1)
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Stochastic volatility model

Data production

R code

# Parameters
N=1000
mu=0
rho=0.1
mu=mu*(1-rho)
sigma=0.1
# Data
y=rnorm(N)
h=rnorm(N)*sigma
for (t in 2:N)
h[t]=mu+h[t-1]*rho+h[t]
y=exp(h/2)*y
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Stochastic volatility model

JPR’s 1994 version

Notations

yt =
√
htut

log ht = α+ δ log ht−1 + σννt

(ut, νt) ∼ N (0, 1)

Note: No stationarity/stability constraint on δ for the AR model
to be causal
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Stochastic volatility model

Stochastic volatility (2)

Likelihood is not available:

L(µ, τ, ̺|y1:T ) =

∫
L(µ, τ, ̺|y1:T , σ1:T ) dσ1:T
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Stochastic volatility model

Stochastic volatility (2)

Likelihood is not available:

L(µ, τ, ̺|y1:T ) =

∫
L(µ, τ, ̺|y1:T , σ1:T ) dσ1:T

Impossible to integrate out the σt’s
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Stochastic volatility model

Stochastic volatility (3)

Expression of the complete likelihood

L(µ,τ, ̺|y1:T , σ1:T )

∝
T∏

t=1

exp− y2
t

2σ2
t

exp−(log σ2
t+1 − µ− ̺ log σ2

t )
2

2τ2

1

τσt
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Stochastic volatility model

JPR’s 1994 version

Priors

Standard (non-stationary) conjugate:

α, δ ∼ N (µ, σ2)

σ2
ν ∼ IG(ν0, s

2
0)
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The Metropolis-Hastings Algorithm

Stochastic volatility model

The Metropolis-Hastings Algorithm
Monte Carlo Methods based on Markov Chains
The Metropolis–Hastings algorithm
A collection of Metropolis-Hastings algorithms

The Gibbs Sampler

Monte Carlo Integration

Sequential importance sampling
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Monte Carlo Methods based on Markov Chains

Running Monte Carlo via Markov Chains

It is not necessary to use a sample from the distribution f to
approximate the integral

I =

∫
h(x)f(x)dx ,



Stochastic Volatility An experimental approach

The Metropolis-Hastings Algorithm

Monte Carlo Methods based on Markov Chains

Running Monte Carlo via Markov Chains

It is not necessary to use a sample from the distribution f to
approximate the integral

I =

∫
h(x)f(x)dx ,

We can obtain X1, . . . ,Xn ∼ f (approx) without directly
simulating from f , using an ergodic Markov chain with
stationary distribution f
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Running Monte Carlo via Markov Chains (2)

Idea

For an arbitrary starting value x(0), an ergodic chain (X(t)) is
generated using a transition kernel with stationary distribution f
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Monte Carlo Methods based on Markov Chains

Running Monte Carlo via Markov Chains (2)

Idea

For an arbitrary starting value x(0), an ergodic chain (X(t)) is
generated using a transition kernel with stationary distribution f

◮ Insures the convergence in distribution of (X(t)) to a random
variable from f .

◮ For a “large enough” T0, X
(T0) can be considered as

distributed from f

◮ Produce a dependent sample X(T0),X(T0+1), . . ., which is
generated from f , sufficient for most approximation purposes.
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The Metropolis-Hastings Algorithm

Monte Carlo Methods based on Markov Chains

Running Monte Carlo via Markov Chains (2)

Idea

For an arbitrary starting value x(0), an ergodic chain (X(t)) is
generated using a transition kernel with stationary distribution f

◮ Insures the convergence in distribution of (X(t)) to a random
variable from f .

◮ For a “large enough” T0, X
(T0) can be considered as

distributed from f

◮ Produce a dependent sample X(T0),X(T0+1), . . ., which is
generated from f , sufficient for most approximation purposes.

Problem: How can one build a Markov chain with a given
stationary distribution?
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The Metropolis-Hastings Algorithm

The Metropolis–Hastings algorithm

The Metropolis–Hastings algorithm

Basics
The algorithm uses the objective (target) density

f

and a conditional density
q(y|x)

called the instrumental (or proposal) distribution
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The Metropolis-Hastings Algorithm

The Metropolis–Hastings algorithm

The MH algorithm

Algorithm (Metropolis–Hastings)

Given x(t),

1. Generate Yt ∼ q(y|x(t)).

2. Take

X(t+1) =

{
Yt with prob. ρ(x(t), Yt),

x(t) with prob. 1 − ρ(x(t), Yt),

where

ρ(x, y) = min

{
f(y)

f(x)

q(x|y)
q(y|x) , 1

}
.
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The Metropolis-Hastings Algorithm

The Metropolis–Hastings algorithm

Features

◮ Independent of normalizing constants for both f and q(·|x)
(ie, those constants independent of x)

◮ Never move to values with f(y) = 0

◮ The chain (x(t))t may take the same value several times in a
row, even though f is a density wrt Lebesgue measure

◮ The sequence (yt)t is usually not a Markov chain
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The Metropolis–Hastings algorithm

Convergence properties

1. The M-H Markov chain is reversible, with
invariant/stationary density f since it satisfies the detailed
balance condition

f(y)K(y, x) = f(x)K(x, y)
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The Metropolis-Hastings Algorithm

The Metropolis–Hastings algorithm

Convergence properties

1. The M-H Markov chain is reversible, with
invariant/stationary density f since it satisfies the detailed
balance condition

f(y)K(y, x) = f(x)K(x, y)

2. As f is a probability measure, the chain is positive recurrent

3. If

Pr

[
f(Yt) q(X

(t)|Yt)

f(X(t)) q(Yt|X(t))
≥ 1

]

< 1. (1)

that is, the event {X(t+1) = X(t)} is possible, then the chain
is aperiodic
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The Metropolis-Hastings Algorithm

The Metropolis–Hastings algorithm

Convergence properties (2)

4. If
q(y|x) > 0 for every (x, y), (2)

the chain is irreducible
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The Metropolis-Hastings Algorithm

The Metropolis–Hastings algorithm

Convergence properties (2)

4. If
q(y|x) > 0 for every (x, y), (2)

the chain is irreducible

5. For M-H, f -irreducibility implies Harris recurrence

6. Thus, for M-H satisfying (1) and (2)

(i) For h, with Ef |h(X)| <∞,

lim
T→∞

1

T

T∑

t=1

h(X(t)) =

∫
h(x)df(x) a.e. f.

(ii) and

lim
n→∞

∥∥∥∥
∫

Kn(x, ·)µ(dx) − f

∥∥∥∥
TV

= 0

for every initial distribution µ, where Kn(x, ·) denotes the
kernel for n transitions.



Stochastic Volatility An experimental approach

The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

The Independent Case

The instrumental distribution q is independent of X(t), and is
denoted g by analogy with Accept-Reject.
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

The Independent Case

The instrumental distribution q is independent of X(t), and is
denoted g by analogy with Accept-Reject.

Algorithm (Independent Metropolis-Hastings)

Given x(t),

a Generate Yt ∼ g(y)

b Take

X(t+1) =





Yt with prob. min

{
f(Yt) g(x

(t))

f(x(t)) g(Yt)
, 1

}
,

x(t) otherwise.
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A collection of Metropolis-Hastings algorithms

Properties

The resulting sample is not iid
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Properties

The resulting sample is not iid but there exist strong convergence
properties:

Theorem (Ergodicity)

The algorithm produces a uniformly ergodic chain if there exists a
constant M such that

f(x) ≤Mg(x) , x ∈ supp f.

In this case,

‖Kn(x, ·) − f‖TV ≤
(

1 − 1

M

)n

.

[Mengersen & Tweedie, 1996]
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Example (Noisy AR(1))

Hidden Markov chain from a regular AR(1) model,

xt+1 = ϕxt + ǫt+1 ǫt ∼ N (0, τ2)

and observables
yt|xt ∼ N (x2

t , σ
2)
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Example (Noisy AR(1))

Hidden Markov chain from a regular AR(1) model,

xt+1 = ϕxt + ǫt+1 ǫt ∼ N (0, τ2)

and observables
yt|xt ∼ N (x2

t , σ
2)

The distribution of xt given xt−1, xt+1 and yt is

exp
−1

2τ2

{
(xt − ϕxt−1)

2 + (xt+1 − ϕxt)
2 +

τ2

σ2
(yt − x2

t )
2

}
.
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Example (Noisy AR(1) too)

Use for proposal the N (µt, ω
2
t ) distribution, with

µt = ϕ
xt−1 + xt+1

1 + ϕ2
and ω2

t =
τ2

1 + ϕ2
.
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Example (Noisy AR(1) too)

Use for proposal the N (µt, ω
2
t ) distribution, with

µt = ϕ
xt−1 + xt+1

1 + ϕ2
and ω2

t =
τ2

1 + ϕ2
.

Ratio
π(x)/qind(x) = exp−(yt − x2

t )
2/2σ2

is bounded
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

(top) Last 500 realisations of the chain {Xk}k out of 10, 000
iterations; (bottom) histogram of the chain, compared with
the target distribution.
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Example (Cauchy by normal)

go random W Given a Cauchy C (0, 1) distribution, consider a normal
N (0, 1) proposal
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Example (Cauchy by normal)

go random W Given a Cauchy C (0, 1) distribution, consider a normal
N (0, 1) proposal
The Metropolis–Hastings acceptance ratio is

π(ξ′)/ν(ξ′)

π(ξ)/ν(ξ))
= exp

[{
ξ2 − (ξ′)2

}
/2
] 1 + (ξ′)2

(1 + ξ2)
.
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Example (Cauchy by normal)

go random W Given a Cauchy C (0, 1) distribution, consider a normal
N (0, 1) proposal
The Metropolis–Hastings acceptance ratio is

π(ξ′)/ν(ξ′)

π(ξ)/ν(ξ))
= exp

[{
ξ2 − (ξ′)2

}
/2
] 1 + (ξ′)2

(1 + ξ2)
.

Poor performances: The proposal distribution has lighter tails
than the target Cauchy and convergence to the stationary
distribution is not even geometric!

[Mengersen & Tweedie, 1996]
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms
De

ns
ity
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Histogram of Markov chain
(ξt)1≤t≤5000 against target
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Range of 1000 parallel runs
initialized with a N (0, 1002)
distribution.
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

JPR’s 1994 version

Stranger version of independent MH where g is replaced with

gc(x) ∝ min(f(x), cg(x))

with c calibrated so that the average acceptance is optimised.
[Tierney, 1994]
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

JPR’s 1994 version

Stranger version of independent MH where g is replaced with

gc(x) ∝ min(f(x), cg(x))

with c calibrated so that the average acceptance is optimised.
[Tierney, 1994]

Q.: Is there any advantage in replacing g with gc?
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Maybe!

Larger c lead to better acceptance rates/entropy ratings...
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Maybe!

Larger c lead to better acceptance rates/entropy ratings...
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Simulation of a N (0, 1) using a Student’s T (3, 0, 1) proposal and
various c’s
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Maybe!

Larger c lead to better acceptance rates/entropy ratings...
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Simulation of a N (0, 1) using a Student’s T (3, 0, 1) proposal and
various c’s
Interesting Master project!!!
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Random walk Metropolis–Hastings

Use of a local perturbation as proposal

Yt = X(t) + εt,

where εt ∼ g, independent of X(t).
The instrumental density is now of the form g(y − x) and the
Markov chain is a random walk if we take g to be symmetric

g(x) = g(−x)
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Corresponding pseudo-code

Algorithm (Random walk Metropolis)

Given x(t)

1. Generate Yt ∼ g(y − x(t))

2. Take

X(t+1) =





Yt with prob. min

{
1,

f(Yt)

f(x(t))

}
,

x(t) otherwise.
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Convergence properties

Uniform ergodicity prohibited by random walk structure
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Convergence properties

Uniform ergodicity prohibited by random walk structure
At best, geometric ergodicity:

Theorem (Sufficient ergodicity)

For a symmetric density f , log-concave in the tails, and a positive
and symmetric density g, the chain (X(t)) is geometrically ergodic.

[Mengersen & Tweedie, 1996]

no tail effect
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Example (Comparison of tail
effects)

Random-walk
Metropolis–Hastings algorithms
based on a N (0, 1) instrumental
for the generation of (a) a
N (0, 1) distribution and (b) a
distribution with density
ψ(x) ∝ (1 + |x|)−3

(a)
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

JPR’s Metropolis-Hastings scheme

Use of a taylored proposal for the target

p(ht|ht−1,ht+1, yt) ∝
h−.5

t exp
{
−.5y2

t /ht

}
1/ht

exp
{
−(log ht − µt)

2/(2σ2)
}

where

µt = [α(1 − δ) + δ(log ht+1 + log ht−1)]/(1 + δ2)

and
σ2 = σ2

ν/(1 + δ2)
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

JPR’s Metropolis-Hastings proposal

Choice of an inverse Gamma density

ht ∼ λϕh−ϕ−1 exp−λ/h

with
ϕ = (1 − 2 expσ2))/(1 − exp(σ2)) + .5

and
λ = (ϕ− 1) exp(µt + .5σ2) + .5y2

t

obtained by moment matching



Stochastic Volatility An experimental approach

The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

JPR’s Metropolis-Hastings proposal

Choice of an inverse Gamma density

ht ∼ λϕh−ϕ−1 exp−λ/h

with
ϕ = (1 − 2 expσ2))/(1 − exp(σ2)) + .5

and
λ = (ϕ− 1) exp(µt + .5σ2) + .5y2

t

obtained by moment matching
JPR: distinguished from the inverted gamma density?!
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Direct implementation

Not convinced that JPR’s use of pseudo accept reject is relevant
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Direct implementation

Not convinced that JPR’s use of pseudo accept reject is relevant

R code : iteration i

# Previous value
y=sample[i-1]
# Proposal
z=rgamma(1,phi)
if (runif(1) < f(lambda/z)*dgamma(1/lambda*y,phi)/

(f(y)*dgamma(z,phi)))
sample[i]=z
else
sample[i]=y
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The Metropolis-Hastings Algorithm

A collection of Metropolis-Hastings algorithms

Direct result
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The Gibbs Sampler

The Gibbs Sampler

The Gibbs Sampler
General Principles
Completion
Convergence
Data Augmentation
Improper Priors
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General Principles

A very specific simulation algorithm based on the target
distribution f :

1. Uses the conditional densities f1, . . . , fp from f
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The Gibbs Sampler

General Principles

General Principles

A very specific simulation algorithm based on the target
distribution f :

1. Uses the conditional densities f1, . . . , fp from f

2. Start with the random variable X = (X1, . . . ,Xp)

3. Simulate from the conditional densities,

Xi|x1, x2, . . . , xi−1, xi+1, . . . , xp

∼ fi(xi|x1, x2, . . . , xi−1, xi+1, . . . , xp)

for i = 1, 2, . . . , p.
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General Principles

Algorithm (Gibbs sampler)

Given x
(t) = (x

(t)
1 , . . . , x

(t)
p ), generate

1. X
(t+1)
1 ∼ f1(x1|x(t)

2 , . . . , x
(t)
p );

2. X
(t+1)
2 ∼ f2(x2|x(t+1)

1 , x
(t)
3 , . . . , x

(t)
p ),

. . .

p. X
(t+1)
p ∼ fp(xp|x(t+1)

1 , . . . , x
(t+1)
p−1 )

X
(t+1) → X ∼ f
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The Gibbs Sampler

General Principles

Properties

The full conditionals densities f1, . . . , fp are the only densities used
for simulation. Thus, even in a high dimensional problem, all of
the simulations may be univariate
The Gibbs sampler is not reversible with respect to f . However,
each of its p components is. Besides, it can be turned into a
reversible sampler, either using the Random Scan Gibbs sampler

see section or running instead the (double) sequence

f1 · · · fp−1fpfp−1 · · · f1
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Example (Bivariate Gibbs sampler)

(X,Y ) ∼ f(x, y)

Generate a sequence of observations by
Set X0 = x0

For t = 1, 2, . . . , generate

Yt ∼ fY |X(·|xt−1)

Xt ∼ fX|Y (·|yt)

where fY |X and fX|Y are the conditional distributions
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Formally, a special case of a sequence of 1-D M-H kernels, all with
acceptance rate uniformly equal to 1.
The Gibbs sampler

1. limits the choice of instrumental distributions
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The Gibbs Sampler

General Principles

Limitations of the Gibbs sampler

Formally, a special case of a sequence of 1-D M-H kernels, all with
acceptance rate uniformly equal to 1.
The Gibbs sampler

1. limits the choice of instrumental distributions

2. requires some knowledge of f

3. is, by construction, multidimensional

4. does not apply to problems where the number of parameters
varies as the resulting chain is not irreducible.
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The Gibbs sampler can be generalized in much wider generality
A density g is a completion of f if

∫

Z

g(x, z) dz = f(x)
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The Gibbs Sampler

Completion

Latent variables are back

The Gibbs sampler can be generalized in much wider generality
A density g is a completion of f if

∫

Z

g(x, z) dz = f(x)

Note

The variable z may be meaningless for the problem
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Purpose

g should have full conditionals that are easy to simulate for a
Gibbs sampler to be implemented with g rather than f

For p > 1, write y = (x, z) and denote the conditional densities of
g(y) = g(y1, . . . , yp) by

Y1|y2, . . . , yp ∼ g1(y1|y2, . . . , yp),

Y2|y1, y3, . . . , yp ∼ g2(y2|y1, y3, . . . , yp),

. . . ,

Yp|y1, . . . , yp−1 ∼ gp(yp|y1, . . . , yp−1).
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Completion

The move from Y (t) to Y (t+1) is defined as follows:

Algorithm (Completion Gibbs sampler)

Given (y
(t)
1 , . . . , y

(t)
p ), simulate

1. Y
(t+1)
1 ∼ g1(y1|y(t)

2 , . . . , y
(t)
p ),

2. Y
(t+1)
2 ∼ g2(y2|y(t+1)

1 , y
(t)
3 , . . . , y

(t)
p ),

. . .

p. Y
(t+1)
p ∼ gp(yp|y(t+1)

1 , . . . , y
(t+1)
p−1 ).
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JPR’s Gibbs sampler

JPR’s approach is a simple completion Gibbs sampler

Conditionals

α, δ, σ ∼ π(α, δ, σ|y1:T , h1:T

h1:T ∼ π(h1:T |y1:T , α, δ, σ)
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The Gibbs Sampler

Completion

JPR’s Gibbs sampler

JPR’s approach is a simple completion Gibbs sampler

Conditionals

α, δ, σ ∼ π(α, δ, σ|y1:T , h1:T

h1:T ∼ π(h1:T |y1:T , α, δ, σ)

except that π(h1:T |y1:T , α, δ, σ) is not available!
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More on JPR’s Gibbs sampler

Instead, use of the full conditionals

π(ht|h−t, y1:T , α, δ, σ) = π(ht|ht−1, ht+1, yt, α, δ, σ)

[thanks to the Markov property]
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The Gibbs Sampler

Completion

More on JPR’s Gibbs sampler

Instead, use of the full conditionals

π(ht|h−t, y1:T , α, δ, σ) = π(ht|ht−1, ht+1, yt, α, δ, σ)

[thanks to the Markov property]
and replacement of an exact simulation from
π(ht|ht−1, ht+1, yt, α, δ, σ) with one single hybrid
Metropolis-Hastings step based on the Inverse Gamma
approximation Use in the full Gibbs
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Random Scan Gibbs sampler

back to basics don’t do random

Modification of the above Gibbs sampler where, with probability
1/p, the i-th component is drawn from fi(xi|X−i), ie when the
components are chosen at random

Motivation

The Random Scan Gibbs sampler is reversible.
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The Gibbs Sampler

Completion

Slice sampler as generic Gibbs

If f(θ) can be written as a product

k∏

i=1

fi(θ),

it can be completed as

k∏

i=1

I0≤ωi≤fi(θ),

leading to the following Gibbs algorithm:
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Algorithm (Slice sampler)

Simulate

1. ω
(t+1)
1 ∼ U[0,f1(θ(t))];

. . .

k. ω
(t+1)
k ∼ U[0,fk(θ(t))];

k+1. θ(t+1) ∼ UA(t+1) , with

A(t+1) = {y; fi(y) ≥ ω
(t+1)
i , i = 1, . . . , k}.
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Example of results with a truncated N (−3, 1) distribution
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Example of results with a truncated N (−3, 1) distribution
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Completion

Example of results with a truncated N (−3, 1) distribution
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Number of Iterations 2, 3, 4



Stochastic Volatility An experimental approach

The Gibbs Sampler

Completion

Example of results with a truncated N (−3, 1) distribution
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Example of results with a truncated N (−3, 1) distribution
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Example of results with a truncated N (−3, 1) distribution
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Completion

Example of results with a truncated N (−3, 1) distribution
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Good slices

The slice sampler usually enjoys good theoretical properties (like
geometric ergodicity and even uniform ergodicity under bounded f
and bounded X ).
As k increases, the determination of the set A(t+1) may get
increasingly complex.
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Example (Stochastic volatility core distribution)

Difficult part of the stochastic volatility model is the distribution of
the volatility vector σ1:T

If we consider only σt conditional on σt−1 and on yt, we obtain a
density of the kind (in log σt)

π(x) ∝ exp−
{
σ2(x− µ)2 + β2 exp(−x)y2 + x

}
/2 ,

simplified in
exp−

{
x2 + α exp(−x)

}

by a change of variable
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Example (Stochastic volatility core distribution (2))

Slice sampling exp−
{
x2 + α exp(−x)

}
means simulating from a

uniform distribution on

A =
{
x; exp−

{
x2 + α exp(−x)

}
/2 ≥ u

}

=
{
x;x2 + α exp(−x) ≤ ω

}

if we set ω = −2 log u.
Sad note Inversion of x2 + α exp(−x) = ω needs to be done by
trial-and-error.
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Example (Stochastic volatility core distribution (3))

Alternative with two uniforms

exp−
{
x2 + α exp(−x)

}
=

∫
Iu1≤expx 2Iu1≤exp−α exp(−x)du1du2
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Example (Stochastic volatility core distribution (3))

Alternative with two uniforms

exp−
{
x2 + α exp(−x)

}
=

∫
Iu1≤expx 2Iu1≤exp−α exp(−x)du1du2

R code

alpha=3
u=log(runif(2)*c(exp(-x*x),exp(-alpha*exp(-x))))
upa=sqrt(-u[1])
low=max(-upa,-log(-u[2]/alpha)))
x=runif(1,low,upa)
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Histogram of a Markov chain produced by a slice sampler
and target distribution in overlay.
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Properties of the Gibbs sampler

Theorem (Convergence)

For
(Y1, Y2, · · · , Yp) ∼ g(y1, . . . , yp),

if either
[Positivity condition]

(i) g(i)(yi) > 0 for every i = 1, · · · , p, implies that
g(y1, . . . , yp) > 0, where g(i) denotes the marginal distribution
of Yi, or

(ii) the transition kernel is absolutely continuous with respect to g,

then the chain is irreducible and positive Harris recurrent.
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Convergence

Properties of the Gibbs sampler (2)

Consequences

(i) If
∫
h(y)g(y)dy <∞, then

lim
nT→∞

1

T

T∑

t=1

h1(Y
(t)) =

∫
h(y)g(y)dy a.e. g.

(ii) If, in addition, (Y (t)) is aperiodic, then

lim
n→∞

∥∥∥∥

∫
Kn(y, ·)µ(dx) − f

∥∥∥∥
TV

= 0

for every initial distribution µ.
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Convergence

A poor slice sampler
Example

Consider

f(x) = exp {−||x||} x ∈ R
d

Slice sampler equivalent to
one-dimensional slice sampler on

π(z) = zd−1 e−z z > 0

or on

π(u) = e−u1/d
u > 0

Poor performances when d large
(heavy tails)
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& Rosenthal, 1999)



Stochastic Volatility An experimental approach

The Gibbs Sampler

Data Augmentation

Data Augmentation

The Gibbs sampler with only two steps is particularly useful

Algorithm (Data Augmentation)

Given y(t),

1.. Simulate Y
(t+1)
1 ∼ g1(y1|y(t)

2 ) ;

2.. Simulate Y
(t+1)
2 ∼ g2(y2|y(t+1)

1 ) .
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Data Augmentation

Data Augmentation

The Gibbs sampler with only two steps is particularly useful

Algorithm (Data Augmentation)

Given y(t),

1.. Simulate Y
(t+1)
1 ∼ g1(y1|y(t)

2 ) ;

2.. Simulate Y
(t+1)
2 ∼ g2(y2|y(t+1)

1 ) .

Theorem (Markov property)

Both (Y
(t)
1 ) and (Y

(t)
2 ) are Markov chains, with transitions

Ki(x, x
∗) =

∫
gi(y|x)g3−i(x

∗|y) dy,
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Data Augmentation

Example (Grouped counting data)

360 consecutive records of the number of passages per unit time
Number of
passages 0 1 2 3 4 or more

Number of
observations 139 128 55 25 13
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Example (Grouped counting data (2))

Feature Observations with 4 passages and more are grouped
If observations are Poisson P(λ), the likelihood is

ℓ(λ|x1, . . . , x5)

∝ e−347λλ128+55×2+25×3

(

1 − e−λ
3∑

i=0

λi

i!

)13

,

which can be difficult to work with.
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Example (Grouped counting data (2))

Feature Observations with 4 passages and more are grouped
If observations are Poisson P(λ), the likelihood is

ℓ(λ|x1, . . . , x5)

∝ e−347λλ128+55×2+25×3

(

1 − e−λ
3∑

i=0

λi

i!

)13

,

which can be difficult to work with.
Idea With a prior π(λ) = 1/λ, complete the vector (y1, . . . , y13) of
the 13 units larger than 4
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Algorithm (Poisson-Gamma Gibbs)

a Simulate Y
(t)
i ∼ P(λ(t−1)) Iy≥4 i = 1, . . . , 13

b Simulate

λ(t) ∼ Ga
(

313 +

13∑

i=1

y
(t)
i , 360

)
.
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Data Augmentation

Algorithm (Poisson-Gamma Gibbs)

a Simulate Y
(t)
i ∼ P(λ(t−1)) Iy≥4 i = 1, . . . , 13

b Simulate

λ(t) ∼ Ga
(

313 +

13∑

i=1

y
(t)
i , 360

)
.

The Bayes estimator

δπ =
1

360T

T∑

t=1

(

313 +

13∑

i=1

y
(t)
i

)

converges quite rapidly to R& B
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Rao-Blackwellization

If (y1, y2, . . . , yp)
(t), t = 1, 2, . . . T is the output from a Gibbs

sampler

δ0 =
1

T

T∑

t=1

h
(
y

(t)
1

)
→
∫
h(y1)g(y1)dy1

and is unbiased.
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Rao-Blackwellization

If (y1, y2, . . . , yp)
(t), t = 1, 2, . . . T is the output from a Gibbs

sampler

δ0 =
1

T

T∑

t=1

h
(
y

(t)
1

)
→
∫
h(y1)g(y1)dy1

and is unbiased.
The Rao-Blackwellization replaces δ0 with its conditional
expectation

δrb =
1

T

T∑

t=1

E

[
h(Y1)|y(t)

2 , . . . , y(t)
p

]
.
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Rao-Blackwellization (2)

Then

◦ Both estimators converge to E[h(Y1)]

◦ Both are unbiased,



Stochastic Volatility An experimental approach

The Gibbs Sampler

Data Augmentation

Rao-Blackwellization (2)

Then

◦ Both estimators converge to E[h(Y1)]

◦ Both are unbiased,

◦ and
var
(
E

[
h(Y1)|Y (t)

2 , . . . , Y (t)
p

])
≤ var(h(Y1)),

so δrb is uniformly better (for Data Augmentation)
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algorithms:
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Improper Priors

 Unsuspected danger resulting from careless use of MCMC
algorithms:
It may happen that

◦ all conditional distributions are well defined,

◦ all conditional distributions may be simulated from, but...

◦ the system of conditional distributions may not correspond to
any joint distribution

Warning The problem is due to careless use of the Gibbs sampler
in a situation for which the underlying assumptions are violated
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Example (Conditional exponential distributions)

For the model

X1|x2 ∼ E xp(x2) , X2|x1 ∼ E xp(x1)

the only candidate f(x1, x2) for the joint density is

f(x1, x2) ∝ exp(−x1x2),

but ∫
f(x1, x2)dx1dx2 = ∞

c© These conditionals do not correspond to a joint
probability distribution
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Example (Improper random effects)

Consider

Yij = µ+ αi + εij , i = 1, . . . , I, j = 1, . . . , J,

where
αi ∼ N (0, σ2) and εij ∼ N (0, τ2),

the Jeffreys (improper) prior for the parameters µ, σ and τ is

π(µ, σ2, τ2) =
1

σ2τ2
.
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Example (Improper random effects 2)

The conditional distributions

αi|y, µ, σ2, τ2 ∼ N

(
J(ȳi − µ)

J + τ2σ−2
, (Jτ−2 + σ−2)−1

)
,

µ|α, y, σ2, τ2 ∼ N (ȳ − ᾱ, τ2/JI) ,

σ2|α, µ, y, τ2 ∼ IG
(
I/2, (1/2)

∑

i

α2
i

)
,

τ2|α, µ, y, σ2 ∼ IG



IJ/2, (1/2)
∑

i,j

(yij − αi − µ)2



 ,

are well-defined and a Gibbs sampler can be easily implemented in
this setting.
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Example (Improper random
effects 2)

The figure shows the sequence of
µ(t)’s and its histogram over
1, 000 iterations. They both fail
to indicate that the
corresponding “joint distribution”
does not exist
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something is wrong. However, the output of an “improper” Gibbs
sampler may not differ from a positive recurrent Markov chain.
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Improper Priors

Final notes on impropriety

The improper posterior Markov chain
cannot be positive recurrent

The major task in such settings is to find indicators that flag that
something is wrong. However, the output of an “improper” Gibbs
sampler may not differ from a positive recurrent Markov chain.

Example

The random effects model was initially treated in Gelfand et al.
(1990) as a legitimate model
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Monte Carlo integration

Stochastic volatility model

The Metropolis-Hastings Algorithm

The Gibbs Sampler

Monte Carlo Integration
Introduction
Monte Carlo integration
Importance Sampling
Acceleration methods
Bayesian importance sampling

Sequential importance sampling
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Two major classes of numerical problems that arise in statistical
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◦ Optimization - generally associated with the likelihood
approach
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Monte Carlo Integration

Introduction

Problems with numerical solutions

Two major classes of numerical problems that arise in statistical
inference

◦ Optimization - generally associated with the likelihood
approach

◦ Integration- generally associated with the Bayesian approach
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Monte Carlo integration

Theme:
Generic problem of evaluating the integral

I = Ef [h(X)] =

∫

X

h(x) f(x) dx

where X is uni- or multidimensional, f is a closed form, partly
closed form, or implicit density, and h is a function
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Monte Carlo integration

Monte Carlo integration (2)

Monte Carlo solution
First use a sample (X1, . . . ,Xm) from the density f to
approximate the integral I by the empirical average

hm =
1

m

m∑

j=1

h(xj)
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Monte Carlo Integration

Monte Carlo integration

Monte Carlo integration (2)

Monte Carlo solution
First use a sample (X1, . . . ,Xm) from the density f to
approximate the integral I by the empirical average

hm =
1

m

m∑

j=1

h(xj)

which converges
hm −→ Ef [h(X)]

by the Strong Law of Large Numbers
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Monte Carlo integration

Monte Carlo precision

Estimate the variance with

vm =
1

m

1

m− 1

m∑

j=1

[h(xj) − hm]2,

and for m large,

hm − Ef [h(X)]√
vm

∼ N (0, 1).

Note: This can lead to the construction of a convergence test and
of confidence bounds on the approximation of Ef [h(X)].
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Monte Carlo integration

Example (Cauchy prior/normal sample)

For estimating a normal mean, a robust prior is a Cauchy prior

X ∼ N (θ, 1), θ ∼ C(0, 1).

Under squared error loss, posterior mean

δπ(x) =

∫ ∞

−∞

θ

1 + θ2
e−(x−θ)2/2dθ

∫ ∞

−∞

1

1 + θ2
e−(x−θ)2/2dθ
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Monte Carlo integration

Example (Cauchy prior/normal sample (2))

Form of δπ suggests simulating iid variables

θ1, · · · , θm ∼ N (x, 1)

and calculating

δ̂π
m(x) =

m∑

i=1

θi

1 + θ2
i

/ m∑

i=1

1

1 + θ2
i

.

The Law of Large Numbers implies

δ̂π
m(x) −→ δπ(x) as m −→ ∞.
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Monte Carlo integration
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Range of estimators δπ
m for 100 runs and x = 10
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Monte Carlo Integration

Importance Sampling

Importance sampling

Paradox

Simulation from f (the true density) is not necessarily optimal

Alternative to direct sampling from f is importance sampling,
based on the alternative representation

Ef [h(X)] =

∫

X

[
h(x)

f(x)

g(x)

]
g(x) dx .

which allows us to use other distributions than f
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Monte Carlo Integration

Importance Sampling

Importance sampling algorithm

Evaluation of

Ef [h(X)] =

∫

X

h(x) f(x) dx

by

1. Generate a sample X1, . . . ,Xn from a distribution g

2. Use the approximation

1

m

m∑

j=1

f(Xj)

g(Xj)
h(Xj)
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Same thing as before!!!

Convergence of the estimator

1

m

m∑

j=1

f(Xj)

g(Xj)
h(Xj) −→

∫

X

h(x) f(x) dx
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Monte Carlo Integration

Importance Sampling

Same thing as before!!!

Convergence of the estimator

1

m

m∑

j=1

f(Xj)

g(Xj)
h(Xj) −→

∫

X

h(x) f(x) dx

converges for any choice of the distribution g
[as long as supp(g) ⊃ supp(f)]
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Importance Sampling

Important details

◦ Instrumental distribution g chosen from distributions easy to
simulate

◦ The same sample (generated from g) can be used repeatedly,
not only for different functions h, but also for different
densities f

◦ Even dependent proposals can be used, as seen later
PMC chapter
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Important choice

Although g can be any density, some choices are better than
others:

◦ Finite variance only when

Ef

[
h2(X)

f(X)

g(X)

]
=

∫

X
h2(x)

f2(X)

g(X)
dx <∞ .
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Importance Sampling

Important choice

Although g can be any density, some choices are better than
others:

◦ Finite variance only when

Ef

[
h2(X)

f(X)

g(X)

]
=

∫

X
h2(x)

f2(X)

g(X)
dx <∞ .

◦ Instrumental distributions with tails lighter than those of f
(that is, with sup f/g = ∞) not appropriate.

◦ If sup f/g = ∞, the weights f(xj)/g(xj) vary widely, giving
too much importance to a few values xj.
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Monte Carlo Integration

Importance Sampling

Important choice

Although g can be any density, some choices are better than
others:

◦ Finite variance only when

Ef

[
h2(X)

f(X)

g(X)

]
=

∫

X
h2(x)

f2(X)

g(X)
dx <∞ .

◦ Instrumental distributions with tails lighter than those of f
(that is, with sup f/g = ∞) not appropriate.

◦ If sup f/g = ∞, the weights f(xj)/g(xj) vary widely, giving
too much importance to a few values xj.

◦ If sup f/g = M <∞, accept-reject algorithm available
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Importance Sampling

Optimal importance function

The choice of g that minimizes the variance of the
importance sampling estimator is

g∗(x) =
|h(x)| f(x)∫

Z |h(z)| f(z) dz
.
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Monte Carlo Integration

Importance Sampling

Optimal importance function

The choice of g that minimizes the variance of the
importance sampling estimator is

g∗(x) =
|h(x)| f(x)∫

Z |h(z)| f(z) dz
.

Rather formal optimality result since optimal choice of g∗(x)
requires the knowledge of I, the integral of interest!
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Practical impact

∑m
j=1 h(Xj) f(Xj)/g(Xj)∑m

j=1 f(Xj)/g(Xj)
,

where f and g are known up to constants.

◦ Also converges to I by the Strong Law of Large Numbers.

◦ Biased, but the bias is quite small
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Monte Carlo Integration

Importance Sampling

Practical impact

∑m
j=1 h(Xj) f(Xj)/g(Xj)∑m

j=1 f(Xj)/g(Xj)
,

where f and g are known up to constants.

◦ Also converges to I by the Strong Law of Large Numbers.

◦ Biased, but the bias is quite small

◦ In some settings beats the unbiased estimator in squared error
loss.

◦ Using the ‘optimal’ solution does not always work:

∑m
j=1 h(xj) f(xj)/|h(xj)| f(xj)∑m

j=1 f(xj)/|h(xj)| f(xj)
=

#positive h− #negative h∑m
j=1 1/|h(xj)|
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Selfnormalised importance sampling

For ratio estimator

δn
h =

n∑

i=1

ωi h(xi)

/ n∑

i=1

ωi

with Xi ∼ g(y) and Wi such that

E[Wi|Xi = x] = κf(x)/g(x)
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Monte Carlo Integration

Importance Sampling

Selfnormalised variance

then

var(δn
h) ≈ 1

n2κ2

(
var(Sn

h ) − 2E
π[h] cov(Sn

h , S
n
1 ) + E

π[h]2 var(Sn
1 )
)
.

for

Sn
h =

n∑

i=1

Wih(Xi) , Sn
1 =

n∑

i=1

Wi

Rough approximation

varδn
h ≈ 1

n
varπ(h(X)) {1 + varg(W )}
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IS suffers from curse of dimensionality
As dimension increases, discrepancy between importance and
target worsens

skip explanation



Stochastic Volatility An experimental approach

Monte Carlo Integration

Importance Sampling

IS suffers from curse of dimensionality
As dimension increases, discrepancy between importance and
target worsens

skip explanation

Explanation:
Take target distribution µ and instrumental distribution ν
Simulation of a sample of iid samples of size n x1:n from µn = µ

N

n

Importance sampling estimator for µn(fn) =
∫
fn(x1:n)µn(dx1:n)

µ̂n(fn) =

∑N

i=1 fn(ξi
1:n)

∏N

j=1W
i
j

∑N
j=1

∏N
j=1Wj

,

where W i
k = dµ

dν
(ξi

k), and ξi
j are iid with distribution ν.

For {Vk}k≥0, sequence of iid nonnegative random variables and for
n ≥ 1, Fn = σ(Vk; k ≤ n), set

Un =

n∏

k=1

Vk
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Monte Carlo Integration

Importance Sampling

IS suffers (2)

Since E[Vn+1] = 1 and Vn+1 independent from Fn,

E(Un+1 | Fn) = UnE(Vn+1 | Fn) = Un,

and thus {Un}n≥0 martingale
Since x 7→ √

x concave, by Jensen’s inequality,

E(
√
Un+1 | Fn) ≤

√
E(Un+1 | Fn) ≤

√
Un

and thus {
√
Un}n≥0 supermartingale

Assume E(
√
Vn+1) < 1. Then

E(
√
Un) =

n∏

k=1

E(
√
Vk) → 0, n→ ∞.
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Importance Sampling

IS suffers (3)

But {√Un}n≥0 is a nonnegative supermartingale and thus
√
Un

converges a.s. to a random variable Z ≥ 0. By Fatou’s lemma,

E(Z) = E

(
lim

n→∞

√
Un

)
≤ lim inf

n→∞
E(

√
Un) = 0.

Hence, Z = 0 and Un → 0 a.s., which implies that the martingale
{Un}n≥0 is not regular.

Apply these results to Vk = dµ
dν

(ξi
k), i ∈ {1, . . . , N}:

E

[√
dµ

dν
(ξi

k)

]
≤ E

[
dµ

dν
(ξi

k)

]
= 1.

with equality iff dµ
dν

= 1, ν-a.e., i.e. µ = ν.

Thus all importance weights converge to 0
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Importance Sampling

too volatile!

Example (Stochastic volatility model)

yt = β exp (xt/2) ǫt , ǫt ∼ N (0, 1)

with AR(1) log-variance process (or volatility)

xt+1 = ϕxt + σut , ut ∼ N (0, 1)
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Evolution of IBM stocks (corrected from trend and log-ratio-ed)
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Example (Stochastic volatility model (2))

Observed likelihood unavailable in closed from.
Joint posterior (or conditional) distribution of the hidden state
sequence {Xk}1≤k≤K can be evaluated explicitly

K∏

k=2

exp−
{
σ−2(xk − φxk−1)

2 + β−2 exp(−xk)y
2
k + xk

}
/2 , (1)

up to a normalizing constant.
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Importance Sampling

Computational problems

Example (Stochastic volatility model (3))

Direct simulation from this distribution impossible because of

(a) dependence among the Xk’s,

(b) dimension of the sequence {Xk}1≤k≤K , and

(c) exponential term exp(−xk)y
2
k within (1).
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Importance sampling

Example (Stochastic volatility model (4))

Natural candidate: replace the exponential term with a quadratic
approximation to preserve Gaussianity.
E.g., expand exp(−xk) around its conditional expectation φxk−1 as

exp(−xk) ≈ exp(−φxk−1)

{
1 − (xk − φxk−1) +

1

2
(xk − φxk−1)

2

}
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Monte Carlo Integration

Importance Sampling

Example (Stochastic volatility model (5))

Corresponding Gaussian importance distribution with mean

µk = φxk−1 −
{1 − β2y2

k exp(−φxk−1)}/2
σ−2 + β2y2

k exp(−φxk−1)/2

and variance

τ2
k = (σ−2 + β−2y2

k exp(−φxk−1)/2)
−1

Prior proposal on X1,

X1 ∼ N (0, σ2)
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Importance Sampling

Example (Stochastic volatility model (6))

Simulation starts with X1 and proceeds forward to Xn, each Xk

being generated conditional on Yk and the previously generated
Xk−1.
Importance weight computed sequentially as the product of

exp−
{
σ−2(xk − φxk−1)

2 + β−2 exp(−xk)y
2
k + xk

}
/2

exp−
{
τ−2
k (xk − µk)2/2

}
τ−1
k

.

(1 ≤ k ≤ K)
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weights
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Histogram of the logarithms of the importance weights (left)
and comparison between the true volatility and the best fit,
based on 10, 000 simulated importance samples.
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Corresponding range of the simulated {Xk}1≤k≤100,
compared with the true value.
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Correlated simulations

Negative correlation reduces variance
Special technique — but efficient when it applies
Two samples (X1, . . . ,Xm) and (Y1, . . . , Ym) from f to estimate

I =

∫

R

h(x)f(x)dx

by

Î1 =
1

m

m∑

i=1

h(Xi) and Î2 =
1

m

m∑

i=1

h(Yi)

with mean I and variance σ2
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Acceleration methods

Variance reduction

Variance of the average

var

(
Î1 + Î2

2

)

=
σ2

2
+

1

2
cov(Î1, Î2).

If the two samples are negatively correlated,

cov(Î1, Î2) ≤ 0 ,

they improve on two independent samples of same size
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Antithetic variables

◦ If f symmetric about µ, take Yi = 2µ−Xi

◦ If Xi = F−1(Ui), take Yi = F−1(1 − Ui)

◦ If (Ai)i partition of X , partitioned sampling by sampling
Xj ’s in each Ai (requires to know Pr(Ai))
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Acceleration methods

Control variates

out of control!

For

I =

∫
h(x)f(x)dx

unknown and

I0 =

∫
h0(x)f(x)dx

known,

I0 estimated by Î0 and

I estimated by Î
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Control variates (2)

Combined estimator

Î
∗ = Î + β(Î0 − I0)

Î
∗ is unbiased for I and

var(Î∗) = var(Î) + β2var(Î) + 2βcov(Î, Î0)
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Acceleration methods

Optimal control

Optimal choice of β

β⋆ = −cov(Î, Î0)

var(Î0)
,

with
var(Î⋆) = (1 − ρ2) var(Î) ,

where ρ correlation between Î and Î0

Usual solution: regression coefficient of h(xi) over h0(xi)
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Acceleration methods

Example (Quantile Approximation)

Evaluate

̺ = Pr(X > a) =

∫ ∞

a
f(x)dx

by

̺̂=
1

n

n∑

i=1

I(Xi > a),

with Xi iid f .
If Pr(X > µ) = 1

2 known
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Acceleration methods

Example (Quantile Approximation (2))

Control variate

˜̺ =
1

n

n∑

i=1

I(Xi > a) + β

(
1

n

n∑

i=1

I(Xi > µ) − Pr(X > µ)

)

improves upon ̺̂ if
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Acceleration methods

Example (Quantile Approximation (2))

Control variate

˜̺ =
1

n

n∑

i=1

I(Xi > a) + β

(
1

n

n∑

i=1

I(Xi > µ) − Pr(X > µ)

)

improves upon ̺̂ if

β < 0 and |β| < 2
cov(̺̂, ̺̂0)
var(̺̂0)

2
Pr(X > a)

Pr(X > µ)
.
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Integration by conditioning

Use Rao-Blackwell Theorem

var(E[δ(X)|Y]) ≤ var(δ(X))
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Consequence

If Î unbiased estimator of I = Ef [h(X)], with X simulated from a
joint density f̃(x, y), where

∫
f̃(x, y)dy = f(x),

the estimator
Î
∗ = Ef̃ [Î|Y1, . . . , Yn]

dominate Î(X1, . . . ,Xn) variance-wise (and is unbiased)
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skip expectation

Example (Student’s t expectation)

For
E[h(x)] = E[exp(−x2)] with X ∼ T (ν, 0, σ2)

a Student’s t distribution can be simulated as

X|y ∼ N (µ, σ2y) and Y −1 ∼ χ2
ν .
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Example (Student’s t expectation (2))

Empirical distribution

1

m

m∑

j=1

exp(−X2
j ) ,

can be improved from the joint sample

((X1, Y1), . . . , (Xm, Ym))
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Example (Student’s t expectation (2))

Empirical distribution

1

m

m∑

j=1

exp(−X2
j ) ,

can be improved from the joint sample

((X1, Y1), . . . , (Xm, Ym))

since

1

m

m∑

j=1

E[exp(−X2)|Yj] =
1

m

m∑

j=1

1√
2σ2Yj + 1

is the conditional expectation.
In this example, precision ten times better
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Estimators of E[exp(−X2)]: empirical average (full) and
conditional expectation (dotted) for (ν, µ, σ) = (4.6, 0, 1).
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Bayesian importance functions

Recall algorithm:

1. Generate θ
(1)
1 , · · · , θ(T )

1 from cg(θ)
with c−1 =

∫
g(θ)dθ

2. Take

∫
f(x|θ)π(θ)dθ ≈ 1

T

T∑

t=1

f(x|θ(t))
π(θ(t))

cg(θ(t))

≈
PT

t=1 f(x|θ(t))
π(θ(t))

g(θ(t))
PT

t=1
π(θ(t))

g(θ(t))

= mIS(x)

[Marginal approximation]
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Bayesian importance sampling

Choice of g

g(θ) = π(θ)

mIS(x) =
1

T

∑

t

f(x|θ(t))

♦ often inefficient if data informative
♦ impossible if π is improper
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Monte Carlo Integration

Bayesian importance sampling

Choice of g

g(θ) = π(θ)

mIS(x) =
1

T

∑

t

f(x|θ(t))

♦ often inefficient if data informative
♦ impossible if π is improper

g(θ) = f(x|θ)π(θ)

♦ c unknown

♦ mIS(x) = 1

/
1

T

T∑

t=1

1

f(x|θ(t))
♦ improper priors allowed
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g(θ) = ρπ(θ) + (1 − ρ)π(θ|x)

♦ defensive mixture
♦ ρ≪ 1 Ok

[Hestenberg, 1998]
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Bayesian importance sampling

g(θ) = ρπ(θ) + (1 − ρ)π(θ|x)

♦ defensive mixture
♦ ρ≪ 1 Ok

[Hestenberg, 1998]

g(θ) = π(θ|x)
♦ mh(x) = 1

1

T

T∑

t=1

h(θ)

f(x|θ)π(θ)

♦ works for any h
♦ finite variance if

∫
h2(θ)

f(x|θ)π(θ)
dθ <∞
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Bridge sampling

[Chen & Shao, 1997]

Given two models f1(x|θ1) and f2(x|θ2),

π1(θ1|x) =
π1(θ1)f1(x|θ1)

m1(x)

π2(θ2|x) =
π2(θ2)f2(x|θ2)

m2(x)

Bayes factor:

B12(x) =
m1(x)

m2(x)

ratio of normalising constants
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Bridge sampling (2)

(i) Missing normalising constants:

π1(θ1|x) ∝ π̃1(θ1)
π2(θ2|x) ∝ π̃2(θ2)

B12 ≈ 1

n

n∑

i=1

π̃1(θi)

π̃2(θi)
θi ∼ π2
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Bridge sampling (3)

(ii) Still missing normalising constants:

B12 =

∫
π̃2(θ)α(θ)π1(θ)dθ

∫
π̃1(θ)α(θ)π2(θ)dθ

∀ α(·)

≈

1

n1

n1∑

i=1

π̃2(θ1i)α(θ1i)

1

n2

n2∑

i=1

π̃1(θ2i)α(θ2i)

θji ∼ πj(θ)
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Bridge sampling (4)

Optimal choice

α(θ) =
n1 + n2

n1π1(θ) + n2π2(θ)
[?]

[Chen, Meng & Wong, 2000]
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Sequential importance sampling

basic importance

Sequential importance sampling
Adaptive MCMC
Importance sampling revisited
Dynamic extensions
Population Monte Carlo
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Adaptive MCMC
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Sequential importance sampling

Adaptive MCMC

Adaptive MCMC is not possible

 Algorithms trained on-line usually invalid:
using the whole past of the “chain” implies that this is not a
Markov chain any longer!
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Example (Poly t distribution)

Consider a t-distribution T (3, θ, 1) sample (x1, . . . , xn) with a flat
prior π(θ) = 1
If we try fit a normal proposal from empirical mean and variance of
the chain so far,

µt =
1

t

t∑

i=1

θ(i) and σ2
t =

1

t

t∑

i=1

(θ(i) − µt)
2 ,
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Example (Poly t distribution)

Consider a t-distribution T (3, θ, 1) sample (x1, . . . , xn) with a flat
prior π(θ) = 1
If we try fit a normal proposal from empirical mean and variance of
the chain so far,

µt =
1

t

t∑

i=1

θ(i) and σ2
t =

1

t

t∑

i=1

(θ(i) − µt)
2 ,

Metropolis–Hastings algorithm with acceptance probability

n∏

j=2

[
ν + (xj − θ(t))2

ν + (xj − ξ)2

]−(ν+1)/2
exp−(µt − θ(t))2/2σ2

t

exp−(µt − ξ)2/2σ2
t

,

where ξ ∼ N (µt, σ
2
t ).
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Example (Poly t distribution (2))

Invalid scheme:

◮ when range of initial values too small, the θ(i)’s cannot
converge to the target distribution and concentrates on too
small a support.

◮ long-range dependence on past values modifies the
distribution of the sequence.

◮ using past simulations to create a non-parametric
approximation to the target distribution does not work either



Stochastic Volatility An experimental approach

Sequential importance sampling

Adaptive MCMC
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Adaptive scheme for a sample of 10 xj ∼ T∋ and initial
variances of (top) 0.1, (middle) 0.5, and (bottom) 2.5.
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Comparison of the distribution of an adaptive scheme sample
of 25, 000 points with initial variance of 2.5 and of the target
distribution.
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Sample produced by 50, 000 iterations of a nonparametric
adaptive MCMC scheme and comparison of its distribution
with the target distribution.
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Simply forget about it!

Warning:
One should not constantly adapt the proposal on past
performances

Either adaptation ceases after a period of burnin
or the adaptive scheme must be theoretically assessed on its own
right.
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Importance sampling revisited

Approximation of integrals back to basic importance

I =

∫
h(x)π(x)dx

by unbiased estimators

Î =
1

n

n∑

i=1

̺ih(xi)

when

x1, . . . , xn
iid∼ q(x) and ̺i

def
=

π(xi)

q(xi)
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Markov extension
For densities f and g, and importance weight

ω(x) = f(x)/g(x) ,

for any kernel K(x, x′) with stationary distribution f ,
∫
ω(x)K(x, x′) g(x)dx = f(x′) .

[McEachern, Clyde, and Liu, 1999]
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Importance sampling revisited

Markov extension
For densities f and g, and importance weight

ω(x) = f(x)/g(x) ,

for any kernel K(x, x′) with stationary distribution f ,
∫
ω(x)K(x, x′) g(x)dx = f(x′) .

[McEachern, Clyde, and Liu, 1999]
Consequence: An importance sample transformed by MCMC
transitions keeps its weights
Unbiasedness preservation:

E
[
ω(X)h(X ′)

]
=

∫
ω(x)h(x′)K(x, x′) g(x) dx dx′

= Ef [h(X)]
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Importance sampling revisited

Not so exciting!

The weights do not change!

If x has small weight

ω(x) = f(x)/g(x) ,

then
x′ ∼ K(x, x′)

keeps this small weight.
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Pros and cons of importance sampling vs. MCMC

◮ Production of a sample (IS) vs. of a Markov chain (MCMC)

◮ Dependence on importance function (IS) vs. on previous value
(MCMC)

◮ Unbiasedness (IS) vs. convergence to the true distribution
(MCMC)

◮ Variance control (IS) vs. learning costs (MCMC)

◮ Recycling of past simulations (IS) vs. progressive adaptability
(MCMC)

◮ Processing of moving targets (IS) vs. handling large
dimensional problems (MCMC)

◮ Non-asymptotic validity (IS) vs. difficult asymptotia for
adaptive algorithms (MCMC)
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weights ωt



Stochastic Volatility An experimental approach

Sequential importance sampling

Dynamic extensions

Dynamic importance sampling

Idea

It is possible to generalise importance sampling using random
weights ωt such that

E[ωt|xt] = π(xt)/g(xt)
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(a) Self-regenerative chains
[Sahu & Zhigljavsky, 1998; Gasemyr, 2002]

Proposal
Y ∼ p(y) ∝ p̃(y)

and target distribution π(y) ∝ π̃(y)
Ratios

ω(x) = π(x)/p(x) and ω̃(x) = π̃(x)/p̃(x)

Unknown Known

Acceptance function

α(x) =
1

1 + κω̃(x)
κ > 0
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Geometric jumps

Theorem

If
Y ∼ p(y)

and
W |Y = y ∼ G (α(y)) ,

then
Xt = · · · = Xt+W−1 = Y 6= Xt+W

defines a Markov chain with stationary distribution π
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Plusses

◮ Valid for any choice of κ [κ small = large variance and κ large
= slow convergence]

◮ Only depends on current value [Difference with Metropolis]

◮ Random integer weight W [Similarity with Metropolis]

◮ Saves on the rejections: always accept [Difference with
Metropolis]

◮ Introduces geometric noise compared with importance
sampling

σ2
SZ = 2σ2

IS + (1/κ)σ2
π

◮ Can be used with a sequence of proposals pk and constants
κk [Adaptativity]
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[Gåsemyr, 2002]

Proposal density p(y) and probability q(y) of accepting a jump.
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Dynamic extensions

A generalisation

[Gåsemyr, 2002]

Proposal density p(y) and probability q(y) of accepting a jump.

Algorithm (Gåsemyr’s dynamic weights)

Generate a sequence of random weights Wn by

1. Generate Yn ∼ p(y)

2. Generate Vn ∼ B(q(yn))

3. Generate Sn ∼ Geo(α(yn))

4. Take Wn = VnSn
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Validation

direct to PMC

φ(y) =
p(y)q(y)∫
p(y)q(y)dy

,

the chain (Xt) associated with the sequence (Yn,Wn) by

Y1 = X1 = · · · = X1+W1−1, Y2 = X1+W1 = · · ·

is a Markov chain with transition

K(x, y) = α(x)φ(y)

which has a point mass at y = x with weight 1 − α(x).
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Ergodicity for Gåsemyr’s scheme

Necessary and sufficient condition

π is stationary for (Xt) iff

α(y) = q(y)/(κπ(y)/p(y)) = q(y)/(κw(y))

for some constant κ.
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Ergodicity for Gåsemyr’s scheme

Necessary and sufficient condition

π is stationary for (Xt) iff

α(y) = q(y)/(κπ(y)/p(y)) = q(y)/(κw(y))

for some constant κ.

Implies that
E[W n|Y n = y] = κw(y) .

[Average importance sampling]
Special case: α(y) = 1/(1+κw(y)) of Sahu and Zhigljavski (2001)
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Properties

Constraint on κ: for α(y) ≤ 1, κ must be such that

p(y)q(y)

π(y)
≤ κ

Reverse of accept-reject conditions (!)
Variance of ∑

n

Wnh(Yn)/
∑

n

Wn (2)

is

2

∫
(h(y) − µ)2

q(y)
w(y)π(y)dy − (1/κ)σ2

π ,

by Cramer-Wold/Slutsky
Still worse than importance sampling.
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(b) Dynamic weighting
[Wong & Liang, 1997; Liu, Liang & Wong, 2001; Liang, 2002]

direct to PMC

Generalisation of the above: simultaneous generation of points
and weights, (θt, ωt), under the constraint

E[ωt|θt] ∝ π(θt) (3)

Same use as importance sampling weights
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Algorithm (Liang’s dynamic importance sampling)

1. Generate y ∼ K(x, y) and compute

̺ = ω
π(y)K(y, x)

π(x)K(x, y)

2. Generate u ∼ U(0, 1) and take

(x′, ω′) =

{
(y, (1 + δ)̺/a) if u < a

(x, (1 + δ)ω/(1 − a) otherwise

where a = ̺/(̺+ θ), θ = θ(x, ω), and δ > 0 constant or
independent rv
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Preservation of the equilibrium equation
If g− and g+ denote the distributions of the augmented variable
(X,W ) before the step and after the step, respectively, then

∫ ∞

0

ω′ g+(x′, ω′) dω′ =

∫
(1 + δ) [̺(ω, x, x′) + θ] g−(x, ω)K(x, x′)

̺(ω, x, x′)

̺(ω, x, x′) + θ
dx dω

+

∫
(1 + δ)

ω(̺(ω, x′, z) + θ)

θ
g−(x′, ω)K(x, z)

θ

̺(ω, x′, z) + θ
dz dω

= (1 + δ)

{∫
ω g−(x, ω)

π(x′)K(x′, x)

π(x)
dx dω

+

∫
ω g−(x′, ω)K(x′, z) dz dω

}

= (1 + δ)

{
π(x′)

∫
c0K(x′, x) dx + c0π(x′)

}

= 2(1 + δ)c0π(x′) ,

where c proportionality constant
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Special case: R-move

[Liang, 2002]

δ = 0 and θ ≡ 1, and thus

(x′, ω′) =

{
(y, ̺+ 1) if u < ̺/(̺+ 1)

(x, ω(̺+ 1)) otherwise,

[Importance sampling]
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Special case: W -move

θ ≡ 0, thus a = 1 and

(x′, ω′) = (y, ̺) .

Q-move
[Liu & al, 2001]

(x′, ω′) =

{
(y, θ ∨ ̺) if u < 1 ∧ ̺/θ ,
(x, aω) otherwise,

with a ≥ 1 either a constant or an independent random variable.
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Notes

◮ Updating step in Q and R schemes written as

(xt+1, ωt+1) = {xt, ωt/Pr(Rt = 0)}

with probability Pr(Rt = 0) and

(xt+1, ωt+1) = {yt+1, ωtr(xt, yt+1)/Pr(Rt = 1)}

with probability Pr(Rt = 1), where Rt is the move indicator
and

yt+1 ∼ K(xt, y)
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Notes (2)

◮ Geometric structure of the weights

Pr(Rt = 0) =
ωt

ωt+1
.

and

Pr(Rt = 0) =
ωt r(xt, yt)

ωt r(xt, yt) + θ
, θ > 0 ,

for the R scheme
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Dynamic extensions

Notes (2)

◮ Geometric structure of the weights

Pr(Rt = 0) =
ωt

ωt+1
.

and

Pr(Rt = 0) =
ωt r(xt, yt)

ωt r(xt, yt) + θ
, θ > 0 ,

for the R scheme

◮ Number of steps T before an acceptance (a jump) such that

Pr (T ≥ t) = P (R1 = 0, . . . , Rt−1 = 0)

= E




t−1∏

j=0

ωj

ωj+1



 ∝ E[1/ωt] .
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Alternative scheme

Preservation of weight expectation:

(xt+1, ωt+1) =






(xt, αtωt/Pr(Rt = 0))

with probability Pr(Rt = 0) and

(yt+1, (1 − αt)ωtr(xt, yt+1)/Pr(Rt = 1))

with probability Pr(Rt = 1).
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Alternative scheme (2)

Then

Pr (T = t) = P (R1 = 0, . . . , Rt−1 = 0, Rt = 1)

= E




t−1∏

j=0

αj
ωj

ωj+1
(1 − αt)

ωt−1r(x0, Yt)

ωt





which is equal to

αt−1(1 − α)E[ωo r(x, Yt)/ωt]

when αj constant and deterministic.
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Example

Choose a function 0 < β(·, ·) < 1 and to take, while in (x0, ω0),

(x1, ω1) =

(
y1,

ω0r(x0, y1)

α(x0, y1)
(1 − β(x0, y1)

)

with probability

min(1, ω0r(x0, y1))
∆
= α(x0, y1)

and

(x1, ω1) =

(
x0,

ω0

1 − α(x0, y1)
× β(x0, y1)

)

with probability 1 − α(x0, y1).
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Population Monte Carlo

Idea

Simulate from the product distribution

π
N

n(x1, . . . , xn) =

n∏

i=1

π(xi)

and apply dynamic importance sampling to the sample
(a.k.a. population)

x
(t) = (x

(t)
1 , . . . , x(t)

n )
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Iterated importance sampling

As in Markov Chain Monte Carlo (MCMC) algorithms,
introduction of a temporal dimension :

x
(t)
i ∼ qt(x|x(t−1)

i ) i = 1, . . . , n, t = 1, . . .

and

Ît =
1

n

n∑

i=1

̺
(t)
i h(x

(t)
i )

is still unbiased for

̺
(t)
i =

πt(x
(t)
i )

qt(x
(t)
i |x(t−1)

i )
, i = 1, . . . , n



Stochastic Volatility An experimental approach

Sequential importance sampling

Population Monte Carlo

Fundamental importance equality

Preservation of unbiasedness

E

[
h(X(t))

π(X(t))

qt(X(t)|X(t−1))

]

=

∫
h(x)

π(x)

qt(x|y)
qt(x|y) g(y) dx dy

=

∫
h(x)π(x) dx

for any distribution g on X(t−1)
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Sequential variance decomposition

Furthermore,

var
(
Ît

)
=

1

n2

n∑

i=1

var
(
̺
(t)
i h(x

(t)
i )
)
,

if var
(
̺
(t)
i

)
exists, because the x

(t)
i ’s are conditionally uncorrelated

Note

This decomposition is still valid for correlated [in i] x
(t)
i ’s when

incorporating weights ̺
(t)
i
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Simulation of a population

The importance distribution of the sample (a.k.a. particles) x
(t)

qt(x
(t)|x(t−1))

can depend on the previous sample x
(t−1) in any possible way as

long as marginal distributions

qit(x) =

∫
qt(x

(t)) dx
(t)
−i

can be expressed to build importance weights

̺it =
π(x

(t)
i )

qit(x
(t)
i )
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Special case of the product proposal

If

qt(x
(t)|x(t−1)) =

n∏

i=1

qit(x
(t)
i |x(t−1))

[Independent proposals]
then

var
(
Ît

)
=

1

n2

n∑

i=1

var
(
̺
(t)
i h(x

(t)
i )
)
,
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Validation

skip validation

E

[
̺
(t)
i h(X

(t)
i ) ̺

(t)
j h(X

(t)
j )
]

=

∫
h(xi)

π(xi)

qit(xi|x(t−1))

π(xj)

qjt(xj |x(t−1))
h(xj)

qit(xi|x(t−1)) qjt(xj |x(t−1)) dxi dxj g(x
(t−1))dx(t−1)

= Eπ [h(X)]2

whatever the distribution g on x
(t−1)
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Self-normalised version

In general, π is unscaled and the weight

̺
(t)
i ∝ π(x

(t)
i )

qit(x
(t)
i )

, i = 1, . . . , n ,

is scaled so that ∑

i

̺
(t)
i = 1
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Self-normalised version properties

◮ Loss of the unbiasedness property and the variance
decomposition

◮ Normalising constant can be estimated by

̟t =
1

tn

t∑

τ=1

n∑

i=1

π(x
(τ)
i )

qiτ (x
(τ)
i )

◮ Variance decomposition (approximately) recovered if ̟t−1 is
used instead
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Sampling importance resampling

Importance sampling from g can also produce samples from the
target π

[Rubin, 1987]
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Sampling importance resampling

Importance sampling from g can also produce samples from the
target π

[Rubin, 1987]

Theorem (Bootstraped importance sampling)

If a sample (x⋆
i )1≤i≤m is derived from the weighted sample

(xi, ̺i)1≤i≤n by multinomial sampling with weights ̺i, then

x⋆
i ∼ π(x)
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Sampling importance resampling

Importance sampling from g can also produce samples from the
target π

[Rubin, 1987]

Theorem (Bootstraped importance sampling)

If a sample (x⋆
i )1≤i≤m is derived from the weighted sample

(xi, ̺i)1≤i≤n by multinomial sampling with weights ̺i, then

x⋆
i ∼ π(x)

Note

Obviously, the x⋆
i ’s are not iid
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Iterated sampling importance resampling

This principle can be extended to iterated importance sampling:
After each iteration, resampling produces a sample from π

[Again, not iid!]
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Iterated sampling importance resampling

This principle can be extended to iterated importance sampling:
After each iteration, resampling produces a sample from π

[Again, not iid!]

Incentive

Use previous sample(s) to learn about π and q
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Generic Population Monte Carlo

Algorithm (Population Monte Carlo Algorithm)

For t = 1, . . . , T

For i = 1, . . . , n,

1. Select the generating distribution qit(·)
2. Generate x̃

(t)
i ∼ qit(x)

3. Compute ̺
(t)
i = π(x̃

(t)
i )/qit(x̃

(t)
i )

Normalise the ̺
(t)
i ’s into ¯̺

(t)
i ’s

Generate Ji,t ∼ M((¯̺
(t)
i )1≤i≤N ) and set xi,t = x̃

(t)
Ji,t
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D-kernels in competition

A general adaptive construction:

Construct qi,t as a mixture of D different transition kernels

depending on x
(t−1)
i

qi,t =

D∑

ℓ=1

pt,ℓKℓ(x
(t−1)
i , x),

D∑

ℓ=1

pt,ℓ = 1 ,

and adapt the weights pt,ℓ.
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D-kernels in competition

A general adaptive construction:

Construct qi,t as a mixture of D different transition kernels

depending on x
(t−1)
i

qi,t =

D∑

ℓ=1

pt,ℓKℓ(x
(t−1)
i , x),

D∑

ℓ=1

pt,ℓ = 1 ,

and adapt the weights pt,ℓ.

Example

Take pt,ℓ proportional to the survival rate of the points

(a.k.a. particles) x
(t)
i generated from Kℓ
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Implementation

Algorithm (D-kernel PMC)

For t = 1, . . . , T

generate (Ki,t)1≤i≤N ∼ M ((pt,k)1≤k≤D)

for 1 ≤ i ≤ N , generate

x̃i,t ∼ KKi,t(x)

compute and renormalize the importance weights ωi,t

generate (Ji,t)1≤i≤N ∼ M ((ωi,t)1≤i≤N )

take xi,t = x̃Ji,t,t and pt+1,d =
∑N

i=1 ω̄i,tId(Ki,t)
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Links with particle filters

◮ Usually setting where π = πt changes with t: Population
Monte Carlo also adapts to this case

◮ Can be traced back all the way to Hammersley and Morton
(1954) and the self-avoiding random walk problem

◮ Gilks and Berzuini (2001) produce iterated samples with (SIR)
resampling steps, and add an MCMC step: this step must use
a πt invariant kernel

◮ Chopin (2001) uses iterated importance sampling to handle
large datasets: this is a special case of PMC where the qit’s
are the posterior distributions associated with a portion kt of
the observed dataset



Stochastic Volatility An experimental approach

Sequential importance sampling

Population Monte Carlo

Links with particle filters (2)

◮ Rubinstein and Kroese’s (2004) cross-entropy method is
parameterised importance sampling targeted at rare events

◮ Stavropoulos and Titterington’s (1999) smooth bootstrap and
Warnes’ (2001) kernel coupler use nonparametric kernels on
the previous importance sample to build an improved
proposal: this is a special case of PMC

◮ West (1992) mixture approximation is a precursor of smooth
bootstrap

◮ Mengersen and Robert (2002) “pinball sampler” is an MCMC
attempt at population sampling

◮ Del Moral and Doucet (2003) sequential Monte Carlo
samplers also relates to PMC, with a Markovian dependence
on the past sample x

(t) but (limited) stationarity constraints
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Things can go wrong

Unexpected behaviour of the mixture weights when the number of
particles increases

N∑

i=1

ω̄i,tIKi,t=d−→P
1

D
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Things can go wrong

Unexpected behaviour of the mixture weights when the number of
particles increases

N∑

i=1

ω̄i,tIKi,t=d−→P
1

D

Conclusion

At each iteration, every weight converges to 1/D:
the algorithm fails to learn from experience!!
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Saved by Rao-Blackwell!!

Modification: Rao-Blackwellisation (=conditioning)
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Saved by Rao-Blackwell!!

Modification: Rao-Blackwellisation (=conditioning)

Use the whole mixture in the importance weight:

ωi,t = π(x̃i,t)
D∑

d=1

pt,dKd(xi,t−1, x̃i,t)

instead of

ωi,t =
π(x̃i,t)

KKi,t(xi,t−1, x̃i,t)
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Adapted algorithm

Algorithm (Rao-Blackwellised D-kernel PMC)

At time t (t = 1, . . . , T ),

Generate
(Ki,t)1≤i≤N

iid∼ M((pt,d)1≤d≤D);

Generate
(x̃i,t)1≤i≤N

ind∼ KKi,t(xi,t−1, x)

and set ωi,t = π(x̃i,t)

/∑D
d=1 pt,dKd(xi,t−1, x̃i,t);

Generate
(Ji,t)1≤i≤N

iid∼ M((ω̄i,t)1≤i≤N )

and set xi,t = x̃Ji,t,t and pt+1,d =
∑N

i=1 ω̄i,tpt,d.



Stochastic Volatility An experimental approach

Sequential importance sampling

Population Monte Carlo

Convergence properties

Theorem (LLN)

Under regularity assumptions, for h ∈ L1
Π and for every t ≥ 1,

1

N

N∑

k=1

ω̄i,th(xi,t)
N→∞−→P Π(h)

and
pt,d

N→∞−→P αt
d

The limiting coefficients (αt
d)1≤d≤D are defined recursively as

αt
d = αt−1

d

∫ (
Kd(x, x

′)
∑D

j=1 α
t−1
j Kj(x, x′)

)
Π ⊗ Π(dx, dx′).
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Recursion on the weights

Set F as

F (α) =

(
αd

∫ [
Kd(x, x

′)
∑D

j=1 αjKj(x, x′)

]
Π ⊗ Π(dx, dx′)

)

1≤d≤D

on the simplex

S =

{
α = (α1, . . . , αD); ∀d ∈ {1, . . . ,D}, αd ≥ 0 and

D∑

d=1

αd = 1

}
.

and define the sequence

α
t+1 = F (αt)
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Kullback divergence

Definition (Kullback divergence)

For α ∈ S,

KL(α) =

∫ [
log

(
π(x)π(x′)

π(x)
∑D

d=1 αdKd(x, x′)

)]
Π ⊗ Π(dx, dx′).

Kullback divergence between Π and the mixture.

Goal: Obtain the mixture closest to Π, i.e., that minimises KL(α)
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Connection with RBDPMCA ??

Theorem

Under the assumption

∀d ∈ {1, . . . ,D},−∞ <

∫
log(Kd(x, x

′))Π⊗Π(dx, dx′) <∞

for every α ∈ SD,

KL(F (α)) ≤ KL(α).
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Connection with RBDPMCA ??

Theorem

Under the assumption

∀d ∈ {1, . . . ,D},−∞ <

∫
log(Kd(x, x

′))Π⊗Π(dx, dx′) <∞

for every α ∈ SD,

KL(F (α)) ≤ KL(α).

Conclusion

The Kullback divergence decreases at every iteration of RBDPMCA
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An integrated EM interpretation
skip interpretation

We have

α
min = arg min

α∈S
KL(α) = arg max

α∈S

∫
log pα(x̄)Π ⊗ Π(dx̄)

= arg max
α∈S

∫
log

∫
pα(x̄,K)dK Π ⊗ Π(dx̄)

for x̄ = (x, x′) and K ∼ M((αd)1≤d≤D). Then α
t+1 = F (αt)

means

α
t+1 = arg max

α

∫∫
E

α
t(log pα(X̄,K)|X̄ = x̄)Π ⊗ Π(dx̄)

and
lim
t→∞

α
t = α

min
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Illustration

Example (A toy example)

Take the target

1/4N (−1, 0.3)(x) + 1/4N (0, 1)(x) + 1/2N (3, 2)(x)

and use 3 proposals: N (−1, 0.3), N (0, 1) and N (3, 2)
[Surprise!!!]
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Illustration

Example (A toy example)

Take the target

1/4N (−1, 0.3)(x) + 1/4N (0, 1)(x) + 1/2N (3, 2)(x)

and use 3 proposals: N (−1, 0.3), N (0, 1) and N (3, 2)
[Surprise!!!]

Then

1 0.0500000 0.05000000 0.9000000
2 0.2605712 0.09970292 0.6397259
6 0.2740816 0.19160178 0.5343166
10 0.2989651 0.19200904 0.5090259
16 0.2651511 0.24129039 0.4935585

Weight evolution
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Target and mixture evolution
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Example : PMC for mixtures

Observation of an iid sample x = (x1, . . . , xn) from

pN (µ1, σ
2) + (1 − p)N (µ2, σ

2),

with p 6= 1/2 and σ > 0 known.
Usual N (θ, σ2/λ) prior on µ1 and µ2:

π(µ1, µ2|x) ∝ f(x|µ1, µ2)π(µ1, µ2)
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Algorithm (Mixture PMC)

Step 0: Initialisation

For j = 1, . . . , n = pm, choose (µ1)
(0)
j , (µ2)

(0)
j

For k = 1, . . . , p, set rk = m

Step i: Update (i = 1, . . . , I)

For k = 1, . . . , p,

1. generate a sample of size rk as

(µ1)
(i)
j ∼ N

(
(µ1)

(i−1)
j , vk

)
and (µ2)

(i)
j ∼ N

(
(µ2)

(i−1)
j , vk

)

2. compute the weights

̺j ∝
f
(
x

∣∣∣(µ1)
(i)
j , (µ2)

(i)
j

)
π
(
(µ1)

(i)
j , (µ2)

(i)
j

)

ϕ
(
(µ1)

(i)
j

∣∣∣(µ1)
(i−1)
j , vk

)
ϕ
(
(µ2)

(i)
j

∣∣∣(µ2)
(i−1)
j , vk

)

Resample the
(
(µ1)

(i)
j , (µ2)

(i)
j

)

j
using the weights ̺j,
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Details

After an arbitrary initialisation, use of the previous (importance)
sample (after resampling) to build random walk proposals,

N ((µ)
(i−1)
j , vj)

with a multiscale variance vj within a predetermined set of p scales
ranging from 103 down to 10−3, whose importance is proportional
to its survival rate in the resampling step.
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(u.left)
Number of resampled points for v1 = 5 (darker) and v2 = 2;
(u.right) Number of resampled points for the other variances;
(m.left) Variance of the µ1’s along iterations; (m.right) Average of
the µ1’s over iterations; (l.left) Variance of the µ2’s along
iterations; (l.right) Average of the simulated µ2’s over iterations.
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