Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
mega:seminaire [2019/01/07 12:54]
Camille MALE titre et résum Bourgade
mega:seminaire [2019/01/07 13:20] (Version actuelle)
Camille MALE titre et résum Holcomb
Ligne 21: Ligne 21:
          * 10h30-12h00:​ mini cours par **[[https://​math.nyu.edu/​~bourgade/​|Paul Bourgade]]** //​Équations de boucles et champs log-corrélés.//​ Les équations de boucles permettent de comprendre l'​émergence de champs gaussiens en matrices aléatoires. Dans deux exemples concrets, je prouverai: ​ le théorème de Szegö fort pour les matrices unitaires ; les moments du polynôme caractéristique de matrices de Ginibre.\\ ​          * 10h30-12h00:​ mini cours par **[[https://​math.nyu.edu/​~bourgade/​|Paul Bourgade]]** //​Équations de boucles et champs log-corrélés.//​ Les équations de boucles permettent de comprendre l'​émergence de champs gaussiens en matrices aléatoires. Dans deux exemples concrets, je prouverai: ​ le théorème de Szegö fort pour les matrices unitaires ; les moments du polynôme caractéristique de matrices de Ginibre.\\ ​
          * 14h00-15h00:​ **[[http://​google.com/​search?​q=Slim+Kammoun+math|Slim Kammoun]]** //​Universality for random permutations.// ​ It is known from the work of Baik, Deift and Johansson (1999) ​ that we have the Tracy-Widom fluctuations for the longest increasing subsequence of uniform permutations. We prove that this result holds also in the case of the Ewens distribution and more generally for a class of random permutations with distribution invariant under conjugation. Moreover, we obtain the convergence of the first components of the associated Young tableaux to the Airy Ensemble as well as the global convergence to the Vershik-Kerov-Logan-Shepp shape. The talk will be boxed on the paper //​Monotonous subsequences and the descent process of invariant random permutations//​.\\ ​          * 14h00-15h00:​ **[[http://​google.com/​search?​q=Slim+Kammoun+math|Slim Kammoun]]** //​Universality for random permutations.// ​ It is known from the work of Baik, Deift and Johansson (1999) ​ that we have the Tracy-Widom fluctuations for the longest increasing subsequence of uniform permutations. We prove that this result holds also in the case of the Ewens distribution and more generally for a class of random permutations with distribution invariant under conjugation. Moreover, we obtain the convergence of the first components of the associated Young tableaux to the Airy Ensemble as well as the global convergence to the Vershik-Kerov-Logan-Shepp shape. The talk will be boxed on the paper //​Monotonous subsequences and the descent process of invariant random permutations//​.\\ ​
-         * 15h30-16h30: ​ **[[https://​people.kth.se/​~holcomb/​|Diane Holcomb]]** ​ // //\\ +         * 15h30-16h30: ​ **[[https://​people.kth.se/​~holcomb/​|Diane Holcomb]]** ​ //On the centered maximum of the Sine beta process.// There has been a great deal or recent work on the asymptotics of the maximum of characteristic polynomials or random matrices. Other recent work studies the analogous result for log-correlated Gaussian fields. Here we will discuss a maximum result for the centered counting function of the Sine beta process. The Sine beta process arises as the local limit in the bulk of a beta-ensemble,​ and was originally described as the limit of a generalization of the Gaussian Unitary Ensemble by Valko and Virag with an equivalent process identified as a limit of the circular beta ensembles by Killip and Stoiciu. A brief introduction to the Sine process as well as some ideas from the proof of the maximum will be covered. This talk is on joint work with Elliot Paquette.\\ 
 ===== Calendrier 2018-2019 ===== ===== Calendrier 2018-2019 =====
      * Vendredi **12 Octobre**, salle 201      * Vendredi **12 Octobre**, salle 201
  • mega/seminaire.txt
  • Dernière modification: 2019/01/07 13:20
  • par Camille MALE