Angelina Roche is assistant professor (maître de conférences) at the Ceremade of Université Paris Dauphine. She specializes in functional data analysis, high-dimensional statistics, adaptive methods and model selection.
Chagny G., Channarond A., Hoang V., Roche A. (2022), Adaptive nonparametric estimation of a component density in a two-class mixture model, Journal of Statistical Planning and Inference, vol. 216, p. 51-69
Roche A. (2022), New perspectives in smoothing : minimax estimation of the mean and principal components ofdiscretized functional data, The Graduate Journal of Mathematics, vol. 7, n°2, p. 95-107
Bitseki Penda S., Roche A. (2020), Local bandwidth selection for kernel density estimation in a bifurcating Markov chain model, Journal of Nonparametric Statistics, vol. 32, n°3, p. 535-562
Roche A. (2018), Local Optimization of Black-Box Function with High or Infinite-Dimensional Inputs, Computational Statistics, vol. 33, n°1, p. 467–485
Chagny G., Comte F., Roche A. (2017), Adaptive estimation of the hazard rate with multiplicative censoring, Journal of Statistical Planning and Inference, vol. 184, p. 25-47
Sautreuil M., Bérard C., Chagny G., Channarond A., Roche A., Vergne N. (2018), Modèle de mélange binomial négatif bivarié pour l'analyse de données RNA-Seq, SFds 50èmes Journées de Statistique, Paris, France
Chagny G., Meynaoui A., Roche A. (2022), Adaptive nonparametric estimation in the functional linear model with functional output, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 39 p.
Roche A. (2022), Lasso in infinite dimension : application to variable selection in functional multivariate linear regression, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 43 p.
Belhakem M., Picard F., Rivoirard V., Roche A. (2021), Minimax estimation of Functional Principal Components from noisy discretized functional data, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 35 p.
Roche A. (2018), Variable selection and estimation in multivariate functional linear regression via the Lasso, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 21 p.