Julien Poisat

Maître de conférences / ~Assistant professor
Mathématiques / Mathematics
Section CNU : 26


Probability Theory, Statistical Mechanics


Disordered systems, Disorder relevance, Polymers, Localization (Copolymers, Pinning, Trapping phenomena), Folding/Unfolding (Charged Polymers), Percolation (Polymer melts), Random Walks and Wiener sausages, Renewal theory, Potential theory and Capacity, Large Deviations.


Q. Berger, F. Caravenna, D. Cheliotis, Y. Chino, D. Erhard, N. Guillotin-Plantard, F. den Hollander, J. Martínez, N. Pétrélis, R. Soares dos Santos, F. Simenhaus, R. Sun, N. Zygouras.


ANR LOCAL Localization for polymers and random walks, 2022-2027

Etudiants en thèse/PhD Students:

  1. Nicolas Bouchot, 2021 -. (en co-direction avec Q. Berger).
  2. Elric Angot, 2022 -. (en co-direction avec N. Pétrélis).


  1. D. Erhard, J. Poisat.
    Uniqueness and tube property for the Swiss cheese large deviations.
    Preprint (2023). [hal][arxiv]
  2. D. Erhard, J. Poisat.
    Strong large deviation principles for pair empirical measures of random walks in the Mukherjee-Varadhan topology.
    Preprint (2023). [hal][arxiv]
  3. J. Poisat, F. Simenhaus.
    Localization of a one-dimensional simple random walk among power-law renewal obstacles.
    To appear in Annals of Applied Probability (2024). [hal][arxiv]
  4. J. Poisat, F. Simenhaus.
    A limit theorem for the survival probability of a simple random walk among power-law renewal obstacles.
    Annals of Applied Probability (2020) Vol. 30, No. 5, 2030-2068 [arxiv] [hal (latest version)] [journal].
  5. D. Cheliotis, Y. Chino, J. Poisat.
    The random pinning model with correlated disorder given by a renewal set.
    Annales Henri Lebesgue 2 (2019) 281-329 [journal].
  6. Q. Berger, F. den Hollander, J. Poisat.
    Annealed scaling for a charged polymer in dimensions two and higher
    J. Phys. A: Math. Theor. 51, 2018 (special issue in honour of Stuart Whittington’s 75th birthday) [arxiv][journal].
  7. F. Caravenna, F. den Hollander, N. Pétrélis, J. Poisat.
    Annealed scaling for a charged polymer
    Math. Phys. Anal. Geom. Vol. 19 (1), 2016, [arxiv].
  8. D. Erhard, J. Poisat.
    Asymptotics of the critical time in Wiener sausage percolation with a small radius
    ALEA Lat. Am. J. Probab. Math. Stat. 13 (2016), no. 1, 417–445 [arxiv].
  9. Q. Berger, J. Poisat.
    On the critical curve of the pinning and copolymer models in correlated Gaussian environment
    Electronic Journal of Probability, Vol. 20, no. 71, 2015 [arxiv]
  10. D. Erhard, J. Martínez, J. Poisat
    Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster
    Journal of Theoretical Probability (2017) 30 :784-812. [arxiv]
  11. N. Guillotin-Plantard, J. Poisat, R. Soares dos Santos
    A Quenched Functional Central Limit Theorem for Planar Random Walks in Random Sceneries
    Electronic Communications in Probability, Vol. 19, 2014, [arxiv][journal]
  12. F. den Hollander, J. Poisat.
    Large deviation principles for words drawn from correlated letter sequences
    Electronic Communications in Probability, Vol. 19, 2014 [arxiv][journal]
  13. Q. Berger, F. Caravenna, J. Poisat, R. Sun, N. Zygouras.
    The Critical Curve of the Random Pinning and Copolymer Models at Weak Coupling
    Communications in Mathematical Physics, 326, no. 2, 507-530. (2014) [arxiv]
  14. N. Guillotin-Plantard, J. Poisat.
    Quenched Central Limit Theorems for Random Walks in Random Scenery
    Stochastic Process. Appl. 123, no. 4, 1348-1367 (2013) [arxiv]
  15. J. Poisat.
    Ruelle-Perron-Frobenius operator approach to the annealed pinning model with Gaussian long-range correlated disorder.
    Markov Process. Related Fields 19 (2013), no. 3, 577–606. [arxiv]
  16. J. Poisat.
    Random pinning model with finite range correlations: disorder relevant regime.
    Stochastic Process. Appl. 122, no. 10, 3560-3579 (2012) [arxiv] [journal]
  17. J. Poisat.
    On quenched and annealed critical curves of random pinning model with finite range correlations.
    Ann. Inst. Henri Poincaré. Volume 49, Number 2 (2013) [arxiv]

Thèse de doctorat / PhD thesis

Modèle d'accrochage de polymères en environnement aléatoire faiblement corrélé.
Soutenue le / Defended on : 16/05/2012.
Directrice / Supervisor : Nadine Guillotin-Plantard (Institut Camille Jordan, Université Lyon 1).

Habilitation à diriger des recherches

Random walks, polymers and phase transitions.
Soutenue le / Defended on : 29/09/2020.
Coordinatrice / Coordinator : Béatrice de Tilière (CEREMADE, Université Paris-Dauphine).