Emeric Bouin


Émeric Bouin

I am interested in partial differential equations and its applications to physics and biology.

  1. E. Bouin, J. Coville, G. Legendre, Acceleration in integro-differential combustion equations, in progress, 2021, (www),

  2. E. Bouin, J. Coville, G. Legendre, Sharp exponent of acceleration in integro-differential equations with weak Allee effect, in progress, 2021, (www),

  3. E. Bouin, C. Mouhot, Quantitative fluid approximation in transport theory: a unified approach, submitted, 2020, (www),

  4. E. Bouin, C. Henderson, The Bramson delay in a Fisher-KPP equation with log-singular non-linearity, accepted for publication at Journal of Nonlinear Analysis, 2020, (www),

  5. E. Bouin, G. Legendre, Y. Lou, N. Slover Evolution of anisotropic diffusion in two-dimensional heterogeneous environments, accepted for publication at Journal of Mathematical Biology, 2020, (www),

  6. E. Bouin, J. Dolbeault, L. Lafleche, C. Schmeiser, Fractional hypocoercivity, submitted, 2019, (www),

  7. E. Bouin, V.Calvez, E.Grenier, G.Nadin Large deviations for velocity-jump processes and non-local Hamilton-Jacobi equations, submitted, 2019, (www),

  8. E. Bouin, J. Dolbeault, L. Lafleche, C. Schmeiser, Hypocoercivity and sub-exponential local equilibria, accepted for publication à Monatshefte fur Mathematik, 2020, (www),

  9. E. Bouin, J. Dolbeault, S. Mischler, C. Mouhot, C. Schmeiser, Hypocoercivity without confinement, Pure and Applied Analysis, Mathematical Sciences Publishers, In press, 2 (2), pp.203-232 (2020). (www),

  10. E. Bouin, J. Dolbeault, C. Schmeiser, Diffusion and kinetic transport with very weak confinement, Kinetic & Related Models, 13(2), 345-371, 2020, (www),

  11. E. Bouin, J. Dolbeault, C. Schmeiser, A variational proof of Nash's inequality, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 31 (2020), 211-223. (www),

  12. E. Bouin, C. Henderson, L. Ryzhik, The Bramson delay in the non-local Fisher-KPP equation, Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, 37(1), 51–77.(www),

  13. E. Bouin, J. Garnier, C. Henderson, F. Patout,Thin front limit of an integro-differential Fisher-KPP equation with fat-tailed kernels, SIAM J. Math. Analysis 50(3): 3365-3394, 2018, (www),

  14. E. Bouin, N. Caillerie, Spreading in kinetic reaction-transport equations in higher velocity dimensions, European Journal of Applied Mathematics, 30(2), 219-247. (www),

  15. E. Bouin, M. Chan, C. Henderson, P. Kim Influence of a mortality trade-off on the spreading rate of cane toads fronts, Communications in Partial Differential Equations, 43:11, 1627-1671, 2018, (www),

  16. E. Bouin, C. Henderson, L. Ryzhik, The Bramson logarithmic delay in the cane toads equations, Quart. Appl. Math. 75 (2017), 599-634. (pdf), 2016,

  17. E. Bouin, F. Hoffmann, C. Mouhot Exponential decay to equilibrium for a fibre lay-down process on a moving conveyor belt, SIAM J. Math. Anal., 49(4), 3233–3251. (www),

  18. E. Bouin, C. Henderson, Super-linear spreading in local bistable cane toads equations, Nonlinearity 30:4, 1356-1375. (2017) (pdf)

  19. E. Bouin, C. Henderson, L. Ryzhik, Superlinear spreading in local and nonlocal cane toads equations, Journal de Mathématiques Pures et Appliquées 108 (5) 724 (2017), (pdf), 2015,

  20. E. Bouin, A Hamilton-Jacobi approach for front propagation in kinetic equations, Kinetic & Related Models, Vol. 8 Issue 2, p255-280. (2015), (pdf), (www),

  21. E. Bouin, V. Calvez, G. Nadin, Propagation in a kinetic reaction-transport equation: travelling waves and accelerating fronts, Archive for Rational Mechanics and Analysis 217:2, 571-617, (2015), (pdf), (www),

  22. E. Bouin, V. Calvez, A kinetic eikonal equation, Comptes rendus - Mathématique 350 (2012) pp. 243-248, (pdf), (www),

  23. E. Bouin, V. Calvez, G. Nadin, Hyperbolic traveling waves driven by growth, Math. Models Methods Appl. Sci. 24, 1165 (2014), (pdf), (www),

  24. E. Bouin, V. Calvez, Travelling waves for the cane toads equation with bounded traits, Nonlinearity 27 (2014) 2233-2253, (pdf), (www),

  25. E. Bouin, S. Mirrahimi, A Hamilton-Jacobi limit for a model of population stuctured by space and trait, Commun. Math. Sci., 13(6):1431--1452, (2015). (pdf),

  26. E. Bouin, V. Calvez, N. Meunier, S. Mirrahimi, B. Perthame, G. Raoul, and R. Voituriez, Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration, Comptes rendus - Mathématique 350 (2012) pp. 761-766, (pdf), (www),

  27. S. Mirrahimi, B. Perthame, E. Bouin and P. Millien, Population formulation of adaptative evolution; theory and numerics,
    Book chapter: The Mathematics of Darwin's Legacy, Mathematics and Biosciences in Interaction, Birkhäuser Basel, 2011. (pdf),